IRP stakeholder meeting

Energy planning process next steps for 2022

January 20, 2022

Safety moment

Driving in inclement weather

- Check headlights and clean dirty covers
- Check all vital fluids and tire air pressure
- Keep an emergency kit in your car
- Avoid using cruise control in icy conditions
- Keep your fuel tank filled or car fully charged
- Increase your following distance

Welcome to the webinar and thank you for participating!

Facilitator Requests

- Engage constructively and courteously towards all participants
- Respect the role of the facilitator to guide the group process
- "Take space and make space"
- Avoid use of acronyms and explain technical questions

Agenda

Time	Торіс	Speaker(s)
1:10 – 1:20 p.m.	Overview for today	Phillip Popoff and Kara Durbin
1:20 – 1:40 p.m.	Update on CEIP	Brian Tyson
1:40 – 2:00 p.m.	2023 Electric IRP Progress Report and Gas Utility IRP work plans	Elizabeth Hossner
2:00 – 2:10 p.m.	Break	All
2:10 – 2:50 p.m.	Reflecting climate change in load forecasting	Allison Jacobs
2:50 – 3:15 p.m.	Conservation Potential Assessment	Gurvinder Singh
3:15 – 3:45 p.m.	Small group discussion	All
3:45 – 4:00 p.m.	Next steps	Sophie Glass

Today's Speakers

Phillip Popoff Director, Resource Planning Analytics, PSE

Kara Durbin Director, Clean Energy Strategy, PSE

Brian Tyson Manager, Clean Energy Planning and Implementation, PSE

Elizabeth Hossner Manager, Resource Planning and Analysis, PSE Allison Jacobs Senior Economic Forecasting Analyst, Load Forecasting, PSE

Gurvinder Singh Consulting Resource Planning Analyst, Resource Planning and Analysis, PSE

Sophie Glass & Lucila Gambino

Co-facilitators, Triangle Associates

Engaging IRP stakeholders

This session is being recorded by Puget Sound Energy. Third-party recording is not permitted.

Overview for Today

Phillip Popoff, Director of Resource Planning Analytics, PSE

Energy resource planning

What is integrated resource planning?

- Process evaluating customer energy needs over the next 20 years and ways for PSE to meet those needs to provide clean, safe and reliable energy
- Analyses consider regulatory policies, costs, economic conditions, weather conditions, physical energy systems, etc.
- An Integrated Resource Plan (IRP) serves as the starting point for making decisions about resources that may be procured in the future

Zooming out: timing for this inaugural IRP/CEIP cycle

UTC: Washington Utilities and Transportation Commission

10

Zooming in: implementation and reporting

For 2022, our energy planning process will focus on:

Clean Energy Implementation Plan

We will continue to engage on CEIP elements and begin implementation

2023 Electric Progress Report

- New CETA requirement
- Provides two-year progress report on 2021 IRP
- Results will inform 2023
 Biennial CEIP Update

2023 Gas Utility IRP

- Separate IRP focused on needs of natural gas sales customers
- Helps meet our goal of being a Beyond Net Zero Carbon energy company by 2045

Clean Energy Implementation Plan Update

Kara Durbin, Director of Clean Energy Strategy, PSE

Brian Tyson, Manager of Clean Energy Planning and Implementation, PSE

PSE's first Clean Energy Implementation Plan (2022-2025)

Defines targets to achieve our clean electricity goals

Identifies how all customers benefit with focus on highly impacted communities and vulnerable populations

- Uses customer benefits to shape our resource decisions and enhance the clean electricity transition
- Lists specific actions, programs and investments

Maintains reliability and affordability

Describes how we engaged customers in our efforts

Holds PSE accountable to future work and commitments

How IRP stakeholder input from Nov. 3 shaped the CEIP

Themes heard at Nov. 3 meeting	What we did with it
 Feedback heard from IRP stakeholders: Speed up the clean electricity transition, specifically renewables to address urgency of climate change Update generic resource costs Customer benefit indicator (CBI) prioritization and advisory group input Make CEIP standalone that doesn't require jumping to supporting documents Request that PSE share All-Source Request for Proposal (RFP) costs Accelerate deployment and increase the amount of 	 PSE used stakeholder feedback to make changes to CEIP: Accelerated the transition and increased renewable energy ramp up rate – with 63% of our electric supply from renewable or non-emitting resources by 2025 Updated generic resource costs to National Renewable Energy Laboratory's updated Annual Technology baseline Added a commitment to continue to work on CBI scoring and weighting methodology for next CEIP Worked to balance level of specificity and embedding links in the CEIP
 distributed energy resources (DER) Program suggestions to: increase implementation of time-varying rates; use grid integrated water heaters; and explore on-bill financing Concerns about feasibility to deliver on renewables, as well as 2026 peaking capacity needs 	PSE addressed considerations with costs, sharing All-Source RFP costs, CBI prioritization, implementation of time-varying rate pilots, on-bill financing, DER programs, and other concerns in Appendix C-2.

Targets to achieve our clean electricity goals in 2025

Interim clean electricity target

PSE clean electricity portfolio forecast by **end of 2025***

*measured as a % of net retail load

Specific targets

Energy Efficiency: 1,073,434 MWh for 2022-2025 Equivalent to electricity used by more than 138,000 homes in one year

Demand response: 23.7 MW *New programs incentivizing shifting energy use during peak periods*

- Renewable Energy: 63% of retail sales in 2025
- Large-scale generation, like wind and solar
 - 2x as much local solar and battery programs than today

2022-2025: CETA clean electricity mix

Third-party recording is not permitted.

Policies Act Qualifying Facility

Customer benefit indicators shape outcomes

Highly impacted communities and vulnerable populations (named communities)

Energy benefits

· Improved participation in clean energy programs from named communities

Reduction of burdens

- · Improved participation in clean energy programs from named communities
- Improved affordability of clean energy
- · Increase in culturally- and linguisticallyaccessible program communications for named communities

A Non-energy benefits

- Improved participation in clean energy programs from named communities
- · Increase in quality and quantity of clean energy jobs
- · Improved home comfort

All PSE customers (including highly impacted communities and vulnerable populations)

ත **Public health**

- · Improved outdoor air quality
- · Improved community health

Environment

- Reduction of areenhouse gas emissions
- · Reduction of climate change impacts

E Cost reduction clean energy

Energy security

· Improved access to reliable clean energy

15 Risk reduction

- · Reduction of climate change impacts
- · Improved access to reliable clean energy

Resiliency

Decrease frequency and duration of outages

Customer benefit indicators:

- Outcomes that improve our customers' lives
- Shape program, actions ٠ and investment decisions
- Help ensure all customers • benefit from the clean energy transition

For the customer benefit indicator metrics, reference CEIP Table 3-6

Summary of actions that move us forward

	2022	2023	2024	2025
	Energy Efficiency Programs	 Energy Efficiency Programs 	Energy Efficiency Programs	Energy Efficiency Programs
	Complete Targeted DER RFP	 Start Demand Response Programs 	Expand Demand Response programs	Expand Demand Response programs
Resource specific (projected)	 200 MW Golden Hills wind in service* 100 MW BPA capacity product* 32.8 MW Colville and 76.6 MW Chelan hydro contracts* Complete All-Source and Targeted DER RFPs 7 MW of DER solar in service 	 350 MW Clearwater Wind in service* 23 MW of DER solar in service 5 MW of distributed battery storage in service 	 200 MW of wind in service 200 MW of solar in service 25 MW of utility-scale storage 25 MW of DER solar in service 7 MW of distributed battery storage in service 	 300 MW of wind in service 100 MW of solar in service 25 MW of utility-scale storage 25 MW of DER solar in service 13 MW of distributed battery storage in service
Other investments	 Begin tariff filings for DER programs Customer-centered program design Baseline data collection for CBIs Enabling technologies planning 	 Tariff filings for DER programs Build and deploy new DER and DR programs Initial customer programs and education launch Begin installing enabling technologies Progress reporting and 	 Utility-scale renewables and DERs in service Progress reporting Ongoing programs and education Ongoing installation of enabling technologies 	 Utility-scale renewables and DERs in service Ongoing programs and education Ongoing installation of enabling technologies File 2026–2029 CEIP
		biennial CEIP Update	* CETA-eligible resources already	underway (see CEIP Figure 1-3)

Customers, advisory groups, and stakeholders shaped the CEIP

	Convened and engaged Equity
Y	Advisory Group – new!

- **35+** CEIP-focused meetings with advisory groups, community-based organizations, and other stakeholders
- **1,000+** Respondents to clean electricity values and benefits community survey

350+ Comments on draft CEIP

Outcomes

- Accelerated clean electricity transition
- Expanded definition of vulnerable populations
- Identified burdens, barriers and opportunities
- Development of customer benefit indicators and metrics
- Shaped specific actions and programs
- Broadened public engagement and clean energy education
- Created guiding principles for CEIP implementation

PSE's ongoing work for the 2023 biennial CEIP update

- Incorporate the analysis contained in the 2023 Electric Progress report and results of the 2021 All-Source and 2022 Targeted DER RFPs
- Develop the building blocks for an equity assessment for 2023 CEIP update:
 - Continue to develop data sources for metrics for CBIs and baseline data
 - Report on work to inform the next CEIP:
 - Potential CBIs for fish and wildlife impacts, wildfire impacts, sense of pride and self-sufficiency, and indoor air quality
 - Methodology for scoring and weighting CBIs
 - Continue to assess and measure disparities within existing programs and understand root factors causing disparities
 - Engage highly impacted communities and vulnerable populations on program design

Next steps to delivering clean electricity

21 IRP stakeholder meeting – Jan. 20, 2022

This session is being recorded by Puget Sound Energy. Third-party recording is not permitted. SOUND

ENERGY

Working together for a clean electricity future

UTC comment period through March 2

- UTC will decide whether to approve, deny or modify PSE's CEIP
- PSE's CEIP is in <u>UTC Docket UE-210795</u>. To file a written comment, visit: <u>www.utc.wa.gov/e-filing</u>

Stay informed and involved:

Get the latest news, involvement opportunities and subscribe for email updates: **cleanenergyplan.pse.com**

Email us at ceip@pse.com

Leave a message at (425) 818-2051

2023 Electric Progress Report and Gas Utility IRP work plans

Elizabeth Hossner, Manager, Resource Planning and Analysis, PSE

2023 Electric Progress Report

2023 Electric Progress Report

- New CETA requirement
- Provides two-year progress report on 2021 IRP
- Requires updates as outlined by WAC 480-100-625
 - Some elements of 2021 IRP
 - Updates based on new state/federal requirements and major economic/market conditions
 - Elements of the CEIP as described in WAC 480-100-640
- Results will inform 2023 CEIP Update

2023 Electric Progress Report

WAC 480-100-625 Integrated resource plan development and timing.

The utility must file a two-year progress report. The utility must update:

- Load forecast;
- Demand-side resource assessment, including a new conservation potential assessment;
- Resource costs; and
- The portfolio analysis and preferred portfolio.

The progress report must include other updates that are necessary due to changing state or federal requirements, or significant changes to economic or market forces.

The progress report must also **update for any elements found in the utility's current clean energy implementation plan**, as described in WAC 480-100-640.

Key differences between full IRP & Electric Progress Report

2021 IRP	2023 Electric Progress Report		
Inputs			
 Load forecast Electric price and natural gas prices Generic resource costs and assumptions Conservation potential assessment (CPA) 	 Updates to: Load forecast, includes climate change temperature assumptions Electric price and natural gas prices Generic resource costs and assumptions CPA 		
Modeling			
 Electric Portfolio Resource Adequacy Flexibility Analysis Stochastic analysis Scenario / sensitivity analysis 	 Updates and improvements to: Electric Portfolio Resource Adequacy Flexibility Analysis Stochastic analysis Analyses not included: Scenario / sensitivity 		
Other Updates			
 Inclusion of CETA requirements (e.g., initial CBIs, Economic, Health and Environmental Benefits Assessment) 	 Inclusion of CBIs from 2021 CEIP Preliminary Climate Commitment Act (CCA) analysis based on availability from Dept. of Ecology 		
This session is being recorded by Puget Sound Energy.			

Third-party recording is not permitted.

26

2023 Electric Progress Report modeling process

The 2023 Electric Progress Report will follow a 4-step process for analysis:

- 1. Analyze and establish resource need
 - Energy Need
 - Capacity Need
 - Renewable Need
- 2. Determine planning assumptions and identify resource alternatives
- 3. Portfolio Modeling and Stochastic Analysis
- 4. Develop resource plan

Gas Utility 2023 Integrated Resource Plan

2023 Gas Utility IRP

- Continues to be based on requirements in WAC 480-90-238
- Will be filed separately from the Electric Progress Report
- Focuses on needs of natural gas sales customers
- New considerations:
 - Preliminary modeling of CCA
 - Targeted electrification, inclusive of electric analysis
- Timing:
 - Work plan due to UTC: April 2022
 - IRP filing: April 2023

Anticipated Timeline: 2023 Electric Progress Report and Gas Utility IRP

Third-party recording is not permitted.

Please return in 10 minutes

"Monet Wind" by Eric Jensen of Roslyn, WA

Base Demand Forecast: Climate Change Temperature Assumption Load Forecasting & Analysis

Phillip Popoff, Director of Resource Planning Analytics, PSE

Allison Jacobs, Senior Economic Forecasting Analyst, Load Forecasting, PSE

Assumptions about future temperatures are changing

Today's goal: To inform stakeholders about this building block in the planning process

How temperatures are used

This is the first step for incorporating climate change into planning

Content presented today is PSE's first step in reflecting climate change in the demand forecast and resource plan

We expect the methodologies and data available will continue to evolve over time

There are **no industry standards or best practices** for climate change assumptions

PSE's previous methods to determine normal

PSE's previous normal heating degree days and cooling degree days for load forecasting

Haven't heard of a degree day? Check out these YouTube videos for a detailed explanation: Heating: <u>https://www.youtube.com/watch?v=-0Sj0Fj_RL4</u> Cooling: <u>https://www.youtube.com/watch?v=0IJQjW_aQ78</u>

36 IRP stakeholder meeting – Jan. 20, 2022

This session is being recorded by Puget Sound Energy. Third-party recording is not permitted.
PSE's previous electric peak normal temperatures ("1-in-2 chance") peak temperatures

These temperatures are derived by:

- Find the "1-in-2 chance" (median or 50th percentile) *hourly* temperature during heating/cooling season peak hours 8AM – 9PM
- Evaluate 30 years of historical (actual) data

PSE's previous natural gas utility peak design temperature

Winter: Daily average temperature of 13°F

This temperature is derived by:

- Find the "1-in-50 chance" daily average temperature
- Evaluate annual coldest daily temperatures occurring between 1950-2019

Why is electric peak normal while gas peak is extreme?

Short answer: to support planning needs...

Electric Resource Planning: Industry standards

- Resource adequacy (RA) analysis defines a buffer above normal peak
- RA analysis incorporates numerous risks: hydro conditions, wind generation, temperature driven loads, power plants failing to operating and if they break, how long it takes to fix them
- Planning reserve margin

Gas Utility Resource Planning: Industry standards

- System is physically less complicated, so there is less to go wrong
- Primary risk factor is temperature impacts to loads
- Planning standards focused on "design" or extreme weather conditions

Climate models selected by the Northwest Power and Conservation Council

Climate change models for the region have been developed

 A coalition including climate scientists, Bonneville Power Administration, US Army Corps of Engineers, and Bureau of Reclamation created climate models for the region

> www.nwcouncil.org/2021powerplan_summaryclimate-change-scenarios

 The Northwest Power and Conservation Council's draft 8th Power Plan was issued in September 2021

www.nwcouncil.org/2021-northwest-power-plan

 The Council uses temperature projections downscaled for the region from three different Global Circulation Models

Emissions Scenarios

Climate change models selected by the Council for use in 8th power plan

CanESM2

- Warm in winter .
- Hot in summer .

CCSM4

- High hydro in winter ٠
- Low hydro in summer •

CNRM

- Less overall warming in ٠ winter and summer
- Low hydro in winter ٠
- High hydro in summer ٠

ConESM2

IRP stakeholder meeting - Jan. 20, 2022 42

This session is being recorded by Puget Sound Energy. Third-party recording is not permitted.

Task 1: Develop an Updated Energy Normal

To explore the data, we calculated heating degree days from the climate model temperatures

44 IRP stakeholder meeting – Jan. 20, 2022

We calculated cooling degree days from the climate model temperatures

45

How do we use the climate model data to develop new assumptions for our energy models?

Our goals:

- Incorporate future temperature data into assumptions for the base demand forecast
- 2. Develop a new normal calculation that is objective
- 3. Provide the information in a framework necessary for planning

Considerations we asked ourselves to shape our approach

Use one of the models, or use a combination of all three?

We plan to use all three models in our approach Incorporate history, future, or a combination in normal calculation?

We plan to include some amount of recent actual data to provide a linkage from observed actual to modeled data streams How many years of data to include in calculation?

We plan to base the new normal calculation on 30 years of data (15 years of historical data + 15 years of climate model data) Should the normal degree days remain flat or reflect a trend in the forecast?

We plan to calculate normal degree days that reflect overall warming over time

For electric and gas energy models, we plan to use a 30year normal HDD, centered on the year of interest, rolling forward over time

This session is being recorded by Puget Sound Energy. Third-party recording is not permitted.

For electric energy models, we plan to use a 30-year normal CDD, centered on the year of interest, rolling forward over time

This session is being recorded by Puget Sound Energy. Third-party recording is not permitted.

Example impacts to electric energy demand forecast using updated normal assumption

- Results are for illustrative purposes only to show impacts of changing <u>only</u> the temperature assumptions on energy forecast after Demand Side Resources are included
- These are not results of the updated forecast that will be used in the Electric 2023 IRP Progress Report
- Further updates, including an EV update, will be made to the forecast before it is used in the 2023 Electric Progress Report

Example impacts to natural gas utility energy demand forecast using updated normal assumption

- Results are for illustrative purposes only to show impacts of changing <u>only</u> the temperature assumptions on energy forecast after Demand Side Resources are included
- These are not results of the updated forecast that will be used in the 2023 Gas Utility IRP
- Further updates will be made to the forecast before it is used in the 2023 Gas Utility IRP

Task 2a: Develop an Updated Normal Peak Temperature - Electric

To explore the climate model temperature data during peak hours, we look at the medians and the extremes

Electric Peak Hour Temperature in Winter increases

- The same considerations and approaches apply to determine updated normal peak ٠ temperatures
- For electric normal peak, we are planning to use a 30-year centered rolling time period to ٠ determine "1-in-2 chance" peak temperatures

Assumption Derived from Data

IRP stakeholder meeting - Jan. 20, 2022 54

Electric Peak Hour Temperature in Summer increases

55

Example impacts to electric peak demand forecast using updated normal temperature assumption

- Results are for illustrative purposes only to show impacts of changing <u>only</u> the temperature assumptions on peak forecast after Demand Side Resources
- These are not results of the updated forecast that will be used in the 2023 Electric Progress Report

56 IRP stakeholder meeting – Jan. 20, 2022

Task 2b: Create an Updated Peak Design Temperature – Gas Utility

Need to determine new design peak day temperature assumption for natural gas utility peak model

- The design temperature for natural gas utility peak is based on more extreme temperatures
- Previous: "1-in-50 chance" annual coldest daily temperatures occurring between 1950-2019: 13 F/day

Using Data from all 3 models						
Dates used	# of Obs.	1-in-50 Daily Temp (F)				
1950-2019	79	13				
2010-2049	98					

58 IRP stakeholder meeting – Jan. 20, 2022

For gas utility design peak day, we are planning to use a combination of historical and modelled temperatures to determine design temperature

"1-in-50 chance" daily temperatures occurring from 2010-2049: 13 F/day (flat)

Using Data from all 3 models					
Dates used	# of Obs.	1-in-50 Daily Temp (F)			
1950-2019	79	13			
2010-2049	98	13 🔶			

Using this methodology, the updated gas design day peak temperature is the same as the previous (13F).

59 IRP stakeholder meeting – Jan. 20, 2022

We are seeking feedback on energy and peak temperature methodology for the base demand forecast

- This approach will be used in this IRP as our first step of incorporating climate change into the demand forecast
- We are interested in thoughts, ideas, and feedback as this methodology will evolve as we learn more about available data and developing industry practices

Model	Measurement	Calculation	Based on Time Period
Energy - Electric and Natural Gas	Degree Days	Average	15 years actual + 15 years forward
Peak – Electric Winter	Hourly Temperature	Median (1-in-2 chance)	15 years actual + 15 years forward
Peak – Electric Summer	Hourly Temperature	Median (1-in-2 chance)	15 years actual + 15 years forward
Peak – Natural Gas Utility	Daily Temperature	1-in-50 chance	2010 - 2049

Conservation Potential Assessment (CPA)

Gurvinder Singh, Consulting Resource Planning Analyst, Resource Planning and Analysis, PSE

CPA Overview

- Identify achievable
 technical potential of possible energy efficient
 technologies and measures in the utility's service territory
- Demand Side Resources included in the CPA -Energy efficiency, demand response, distribution efficiency, combined heat & power, distributed solar & codes and standards

Process overview

CPA includes a variety of considerations

Demand Response	Energy Efficiency Electric & Natural Gas	Locational Analysis					
Rooftop Solar PV	Scenarios & Sensitivities	Combined Heat & Power					
Climate Change	Gas to Electric Measures	Named Communities & Equity					

PSE PUGET SOUND ENERGY

CPA timeline

CPA Item	Nov-22	Dec-22	Jar	n-22	Feb	o-22	Mar-	-22	Apr-2	2	May-22	Jun-22	Jul 22 – Mar 23	
Kickoffand Project Management														
EnergyEfficiencyMeasure Data Compilation														
EnergyEfficiency Measure Characterization														REPORTING
Assessment of Energy Efficiency Potential														Separate gas
Assessment of Electri fication Potential														and electric reports
Assessment of Combined Heat and Power Potential														Draft reports August '22 Final reports December '22
Assessment of Rooftop Solar PV Potential														
Assessment of Demand Response Potential														
Develop IRP Supply Curve Bundles														
Reporting .														
Task: HVAC Contractor Heat Pump Conversion Cost Research														
Task: Customer Research, Heat Pump Adoption														

Small Group Discussions

Small group discussions

We will move into our small group discussions. Participants have the opportunity to join two thematic rooms (25 minutes). Participants will return to hear key takeaways from small group discussions

Room 1: Engaging on the 2023 reports	Room 2: Conservation Potential Assessment and Climate Change Temperature Assumption
What topics are important to IRP stakeholders when it comes to providing input on the 2023 reports (2023 Electric Progress Report and 2023 Gas Utility IRP)? What recommendations do IRP stakeholders have when it comes to topics for future meetings?	 CPA: What questions do IRP stakeholders have about the CPA and the process to develop it (i.e. data, assumptions, and scenarios)? Reflecting on past CPAs, are there topics you'd like to PSE to consider?
	 Climate change temperature assumption: Any specific questions about the climate change temperature assumption? What other considerations should PSE reflect on for future analyses?

Breakout room Zoom tips

Each group will report out (~3 minutes each)

"Farmscape" by Tia Savedo of Whidbey Island, WA

69 IRP stakeholder meeting – Jan. 20, 2022

IRP stakeholder feedback process

Feedback form: pse-irp.participate.online/feedback-form

Jan. 24 A recording of the webinar and the transcript of the chat will be posted to the IRP website so those who were unable to attend can review

Jan. 27 Feedback forms are due. Feedback should focus on:

- Plans for 2023 Electric Progress Report and 2023 Gas Utility IRP
- Climate change temperature assumption (future considerations)
- Conservation Potential Assessment considerations
- Feb. 25A feedback report of comments collected from the feedback form,
along with PSE's responses, and a meeting summary will be shared
with stakeholders and posted to pse.com/irp

Next steps and stay in touch

Next meetings with IRP stakeholders

- We'll review feedback from this meeting to shape our stakeholder engagement strategy
- Stay tuned for updates on meeting dates!

Stay in touch

pse.com/irp

Appendix

Common acronyms

Acronym	Meaning
BCP	Biannual Conservation Program
CBI	Customer benefit indicator
CCA	Climate Commitment Act
CDD	Cooling Degree Day
CEAP	Clean Energy Action Plan – 10-year strategy
CEIP	Clean Energy Implementation Plan – 4-year roadmap
CETA	Clean Energy Transformation Act, which set clean electricity standards for Washington
СРА	Conservation Potential Assessment
DER	Distributed energy resource, e.g., rooftop solar & small-scale battery storage
DR	Demand response, e.g., incentive programs for customers to reduce their energy use at peak periods
HDD	Heating Degree Day
HIC	Highly Impacted Communities
IRP	Integrated Resource Plan – 20 year resource plan
Named Communities	Refers to "Highly Impacted Community" and "Vulnerable Populations" (defined by CETA)
PPA	Power purchase agreement
RA	Resource Adequacy
RFP	Request for proposal
UTC	Washington Utilities and Transportation Commission, which regulates PSE
VP	Vulnerable Populations
WAC	Washington Administration Code