# **RPAG** meeting

**2025 Integrated Resource Plan** 

March 12, 2024





## Safety moment

March is Eye Wellness Month!

- •Wear appropriate eyewear in a hazardous area
- •Wear googles or face shields when working with chemicals
- •Keep your eye protection in good condition
- •Prevent screen-related eye strain with the 20-20-20 rule:
  - Every 20 minutes look away from your screen and look at an object 20 feet away for 20 seconds



## **Facilitator requests**

- Engage constructively and courteously towards all participants
- Take space and make space
- Respect the role of the facilitator to guide the group process
- Avoid use of acronyms and explain technical questions
- Use the Feedback Form for additional input to PSE
- Aim to focus on the meeting topic
- Public comments will occur after PSE's presentations





| Time                    | AgendaItem                                | Presenter / Facilitator           |
|-------------------------|-------------------------------------------|-----------------------------------|
| 12:00 p.m. – 12:05 p.m. | Introduction and agenda review            | Sophie Glass, Triangle Associates |
| 12:05 p.m. – 12:15 p.m. | Feedbacksummary                           | Phillip Popoff, PSE               |
| 12:15 p.m. – 1:30 p.m.  | Resource adequacy results                 | Joe Hooker, E3<br>Arne Olson, E3  |
| 1:30 p.m. – 1:40 p.m.   | Break                                     | All                               |
| 1:40 p.m. – 2:50 p.m.   | Social cost of greenhouse gas modeling    | Elizabeth Hossner, PSE            |
| 2:50 p.m 3:00 p.m.      | Next steps and public comment opportunity | Sophie Glass, Triangle Associates |
| 3:00 p.m.               | Adjourn                                   | All                               |



## **Today's speakers**

**Sophie Glass** Facilitator, Triangle Associates

Phillip Popoff Director, Resource Planning Analytics, PSE

Joe Hooker

Director, Energy + Environmental Economics (E3)

#### **Arne Olson**

Senior Partner, E3

#### **Elizabeth Hossner**

Manager, Resource Planning and Analysis



# Feedback summary

Phillip Popoff, PSE



## January 17 RPAG meeting feedback

- Public feedback included:
  - Request to spell out acronyms
  - Public participation in RPAG meetings
  - PSE electric reliability concerns
- RPAG feedback included:
  - Questions from Commission staff about EV forecast and resource adequacy modeling



## **Puget Sound Energy Resource Adequacy**

**RPAG** presentation

March 2024

Energy+Environmental Economics

Arne Olson, Senior Partner Joe Hooker, Director Michaela Levine, Managing Consultant Ruoshui Li, Senior Consultant Ritvik Jain, Consultant

# IAP2 Spectrum



#### **INCREASING IMPACT ON THE DECISION**



© International Association for Public Participation

#### Agenda

- + Background on resource adequacy
- + Changes in the 2025 Integrated Resource Plan (IRP)
- + Planning reserve margin (PRM) and effective load carrying capability (ELCC) results
- + Comparison of Loss of Load Expectation (LOLE) and Loss of Load Probability (LOLP) results

### **E3's Experience Performing Resource Adequacy Studies**

- + E3 has performed resource adequacy studies and advised entities on resource adequacy across North America
- E3 has developed a proprietary loss of load probability model, RECAP, to perform resource adequacy studies
- + E3 performed a resource adequacy study for PSE's 2023 Electric Progress Report (EPR)



States where E3 has provided direct support to utilities, market operators, and/or state agencies to perform RA modeling or develop RA frameworks Areas where E3 has worked with other clients to examine issues related to resource adequacy



## Background on Resource Adequacy



#### **Resource Adequacy Inputs to the Portfolio Analysis: PRM and ELCC**

#### Planning Reserve Margin (PRM)

The PRM is the total amount of capacity needed to satisfy the reliability target. (E3 will perform modeling for both 5% LOLP and 0.1 LOLE.)

- "How many MW needed in total"
- Measured as % above PSE's expected peak load

#### **Effective Load Carrying Capability (ELCC)**

The ELCC is the equivalent "perfect" capacity that a resource provides in meeting PSE's reliability target

- "How many MW provided by each resource"
- Measured as % of nameplate capacity



# Changes in the 2025 IRP



## Key Changes in the 2025 IRP Resource Adequacy Analysis

| Components               | 2023 EPR                                                                           | 2025 IRP                                                                            | Directional Impact on Capacity Short                                         |
|--------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Load<br>Forecast         | No electric vehicle (EV)<br>loads                                                  | Includes EV loads                                                                   | Resource need (large impact)                                                 |
| Operating<br>Reserves    | 7.7%<br>(includes balancing reserves)                                              | 7.1%<br>(excludes balancing reserves)                                               | Resource need (small impact)                                                 |
| PG&E<br>Exchange         | 300 MW export obligations<br>in summer in exchange for<br>300 MW imports in winter | PG&E exchange removed                                                               | <ul> <li>Resource need in summer</li> <li>Resource need in winter</li> </ul> |
| Market<br>Availability   | Market curtailments in summer and winter                                           | All purchase curtailments in summer                                                 | Changes the timing of loss of load events                                    |
| Mid-C Hydro<br>Resources |                                                                                    | Increased MW from Douglas<br>PUD and modeled flexibility for<br>two Grant PUD units | Resource need                                                                |
| Demand<br>Response       | No demand response in E3 modeled base portfolio                                    | 119 MW winter nameplate;<br>149 MW summer nameplate                                 | Resource need                                                                |

\* Other changes included: modeling line losses for MT, WY, ID resources; slight changes in small contracts; an updated profile for Snoqualmie; updated thermal outage rates. These changes have a relatively minor impact on the resource need relative to the items above.

#### Impact of Electric Vehicles on Peak Energy Demand Example from Model C



The charts above are an average across 30 load years. Managed charging will be considered in PSE's portfolio analysis.

#### Change in Timing of Loss-of-Load Events Average of All Models

#### MWh of Unserved Energy in <u>Winter</u>



#### In the 2025 IRP, winter loss of load events are less concentrated in morning periods for two reasons:

- Addition of electric vehicles  $\rightarrow$  higher evening demand
- Reduction in market purchase curtailments → no longer deep market purchase curtailments in the morning

The length of loss of load events is shorter as a result.

#### MWh of Unserved Energy in <u>Summer</u>



In the 2025 IRP, summer loss of load events shift slightly later due to the addition of electric vehicles.

The length of loss of load events is similar.

### **2025 IRP Results** (Loss of Load Expectation runs)



#### **Planning Reserve Margin:** Comparison between 2025 Integrated Resource Plan (IRP) and 2023 Electric Progress Report (EPR)

|                                                                                  | Winter          |                   |       | Summer          |                 |                                                                    |
|----------------------------------------------------------------------------------|-----------------|-------------------|-------|-----------------|-----------------|--------------------------------------------------------------------|
|                                                                                  | EPR             | IRP               |       | EPR             | IRP             |                                                                    |
|                                                                                  |                 |                   |       |                 |                 | Median peak loads increase                                         |
| Median peak load                                                                 | 5,004           | 5,323             |       | 4,171           | 4,903           | (driven primarily by EV load),<br>especially in summer             |
|                                                                                  |                 |                   | ••••• |                 |                 |                                                                    |
| Capacity short vs. target                                                        | 1,272           | 1,622             |       | 1,875           | 1,648           | Winter shortfall increases and<br>summer decreases, due in part to |
|                                                                                  |                 |                   |       |                 |                 | removal of the PG&E exchange                                       |
| Capacity short vs. target<br>(without unspecified imports)                       | 2,712           | 2,973             |       | 2,836           | 2,986           |                                                                    |
| Τ                                                                                | he overall capa | acity short incre | ase   | es to ~3,000 MW | / in both seaso | ns                                                                 |
| Planning reserve margin                                                          | 26%             | 22%               |       | 28%             | 24%             |                                                                    |
| The planning reserve margin target is ~4% lower, due to reduced load variability |                 |                   |       |                 |                 |                                                                    |

across weather years and a slightly lower operating reserve requirement

# **Planning Reserve Margin:** 2025 IRP vs. 2023 EPR



#### Planning Reserve Margin: 2025 IRP vs. 2023 EPR



#### **Renewable Resource ELCCs** 2025 IRP vs. 2023 EPR

#### ELCC of 100 MW Generic Resource Addition (%)

|       | Pasauraa                 | Winter |     | Summer |             |
|-------|--------------------------|--------|-----|--------|-------------|
|       | Resource                 | EPR    | IRP | EPR    | IRP         |
|       | Zone 1: British Columbia | 34%    | 39% | 13%    | <b>15</b> % |
| Wind  | Zone 2: Offshore Wind    | 32%    | 35% | 41%    | 38%         |
|       | Zone 3: Washington       | 13%    | 14% | 5%     | 6%          |
|       | Zone 4: Montana          | 36%    | 31% | 23%    | 21%         |
|       | Zone 5: Idaho            | 12%    | 13% | 17%    | 19%         |
|       | Zone 6: Wyoming          | 46%    | 44% | 34%    | 36%         |
|       | Zone 2: Washington West  | 4%     | 4%  | 53%    | 51%         |
| Solar | Zone 3: Washington East  | 4%     | 2%  | 55%    | 48%         |
|       | Zone 5: Idaho            | 8%     | 2%  | 38%    | 30%         |
|       | Zone 6: Wyoming          | 11%    | 2%  | 28%    | 22%         |

#### Overall, the renewable ELCC results for the 2025 IRP are very similar to those from the 2023 EPR

#### **Storage and Demand Response Resource ELCCs** 2025 IRP vs. 2023 EPR

#### ELCC of 100 MW Generic Resource Addition (%)

| Pasauraa                    | V   | Vinter | Summer |     |
|-----------------------------|-----|--------|--------|-----|
| Resource                    | EPR | IRP    | EPR    | IRP |
| Demand Response (3-hour)    | 69% | 82%    | 95%    | 71% |
| Demand Response (4-hour)    | 73% | 84%    | 99%    | 70% |
| Li-ion Battery (4-hour)     | 96% | 98%    | 95%    | 98% |
| Pumped Storage (8-hour)     | 99% | 99%    | 99%    | 99% |
| Iron-Air Battery (100-hour) |     | 97%    |        | 97% |

#### Demand response: the ELCC is higher in winter and lower in summer:

- <u>Winter</u>: shorter loss of load events result in an increase in the ELCC of demand response
- <u>Summer</u>: the addition of demand response in the base portfolio reduces the ELCC for subsequent additions of demand response

Storage: the ELCC results for the 2025 IRP are very similar to those from the 2023 EPR.

#### Washington Wind and Solar ELCC Comparison 2025 IRP vs. 2023 EPR



#### **4-hour Li-ion Battery ELCC Comparison** 2025 IRP vs. 2023 EPR



### **2025 IRP Results** LOLE vs. LOLP



#### **Planning Reserve Margin** LOLE vs. LOLP



#### Washington Wind ELCC Comparison LOLE vs. LOLP



#### Washington East Solar ELCC Comparison LOLE vs. LOLP



#### **4-hr Li-ion Battery ELCC Comparison** LOLE vs. LOLP



### **Summary**

- **1.** The planning reserve margin is 21-24%, depending on the year and season.
- 2. In 2031, PSE needs ~3,000 MW of additional perfect capacity in both seasons.
  - The addition of electric vehicles in the load forecast and the removal of the PG&E exchange are the two biggest changes.
  - PSE will consider managed charging of electric vehicles as a resource in its portfolio analysis.
- 3. Compared with the 2023 Electric Progress Report, loss of load events are more concentrated in the evening in winter and shift back ~1 hour in summer.
  - The addition of electric vehicles in the load forecast and the switch to a reliable Pacific Northwest system are the two biggest factors.

#### 4. The ELCC of renewable resources are similar to those quantified for the 2023 Electric Progress Report

• The change in timing of loss of load events slightly reduces the ELCC of solar resources, while the directional impacts for wind resources differ based on their locational profiles but overall aren't large

#### 5. The ELCC of storage and demand response resources increase in winter vs. the 2023 Electric Progress Report

- Shorter duration loss of load events in winter improve the ELCC for energy-limited resources like storage and demand response
- 6. The 0.1 Loss of Load Expectation (LOLE) and 5% Loss of Load Probability (LOLP) reliability targets do not result in large differences in PRM or ELCC values for PSE's system

## **Thank You**

arne@ethree.com joe.hooker@ethree.com michaela.levine@ethree.com ruoshui.li@ethree.com ritvik.jain@ethree.com



# Social cost of greenhouse gas modeling

Elizabeth Hossner, PSE





#### **INCREASING IMPACT ON THE DECISION**



© International Association for Public Participation

## Social cost of greenhouse gases (SCGHG) methodology

- SCGHG is currently applied as an externality cost but interested parties have suggested it be considered in dispatch
- PSE recommends it remain as an externality so to not inappropriately influence dispatch
- PSE has run scenarios with SCGHG in dispatch and the results are broadly similar with the selection of capacity resources changing

Today's goal: Agree on one approach moving forward to maintain consistency and improve efficiency



## SCGHG as a cost adder

- The cost adder provides an economic disincentive for building thermal plants without artificially increasing the price of electricity for ratepayers.
- Applying the SCGHG as a cost adder
  - For thermal plants:
    - SCGHG costs are included in the value reporting for resources Long Term Capacity Expansion model run but the emissions costs are not included in Dispatch
  - Unspecified market purchases
    - SCGHG (\$/ton) \* emission rate (ton/MWh) = adder (\$/MWh)
    - PSE is using the 0.437 metric tons CO2/MWh for unspecified market purchases from Section 7 of E2SSB 5116, paragraph 2.
- The SCGHG is accounted for post-economic dispatch to evaluate competing resource portfolios as they would function in the real world.



## **Applying SCGHG to total costs**



#### Why is SCGHG not included in the dispatch cost?

SCGHG is not a binding policy or a cost charged to customers like a carbon tax, so including it in dispatch will risk making decisions on resources that do not reflect real life operations.



## Alternative methodology: applying SCGHG in dispatch

We received feedback that the SCGHG should be included in dispatch costs for the long-term capacity expansion when making resource decisions





## How SCGHG is applied in the portfolio model



SCGHG = (resulting emissions from model run) x (\$/ton)



## **Levelized costs**

- Levelized cost of capacity decreases with SCGHG in dispatch, resulting in a model that will favor peakers over DR, BESS, etc.
- Levelized cost of energy increases for peakers, but these resources are added for their capacity value, not their energy production
- Adding SCGHG as a dispatch cost makes the plant look more expensive to dispatch then it is and can
  result in <u>suboptimal</u> decision making

| Cost of Capacity<br>Levelized \$/kw-yr | SCGHG as Externality Cost | SCGHG as Dispatch Cost |
|----------------------------------------|---------------------------|------------------------|
| Frame Peaker                           | \$148                     | \$104                  |
| Recip Peaker                           | \$308                     | \$234                  |
| CCCT + DF                              | \$441                     | \$259                  |

#### 2021 IRP



## Results – externality vs. dispatch

Overall differences:

- SCGHG as dispatch: More peakers with majority using NG/H2 blend with less batteries and demand response
- SCGHG as externality: Less peakers with majority using biodiesel with more batteries and demand response
- Renewable resource selections are largely unchanged both portfolios meet CETA requirements
- Higher portfolio cost with SCGHG as dispatch cost, but similar total cost with SCGHG as externality

#### NPV Portfolio Cost, 2024-2045 (\$ Billions)

| Portfolio – 23 Progress<br>Report | Portfolio<br>Cost | SCGHG | Total Cost |
|-----------------------------------|-------------------|-------|------------|
| 23 EPR Reference                  | \$17.6            | \$3.2 | \$20.8     |
| 23 EPR SCGHG in Dispatch          | \$18.3            | \$2.5 | \$20.8     |



#### 2045 Capacity Resource Additions



## Facilitated discussion – preferred methodology

- Help us determine which methodology to use
- Which methodology do you prefer to use in the 2025 IRP and why?
  - SCGHG as an externality cost adder
  - SCGHG in dispatch cost for the long-term capacity expansion



# Next steps

Sophie Glass, Triangle Associates



## **Upcoming activities**

| Date           | Activity                                                                                                 |
|----------------|----------------------------------------------------------------------------------------------------------|
| March 19, 2024 | Feedback form for March 12 RPAG meeting closes                                                           |
| March 25, 2024 | RPAG meeting: Gas and electric<br>resource alternatives (supply-side)<br>and scenarios and sensitivities |



Email us at irp@pse.com

| Г  | ٦ |
|----|---|
| L. | 1 |
|    |   |

Visit our website at pse.com/irp





Leave a voice message at 425-818-2051



# Public comment opportunity

Please raise your "hand" if you would like to provide comment."



## Thanks for joining us!



## Acronyms

| Acronym | Meaning                                           |  |
|---------|---------------------------------------------------|--|
| CCA     | Climate Commitment Act                            |  |
| СЕТА    | Clean Energy Transformation Act                   |  |
| CEIP    | Clean Energy Implementation Plan                  |  |
| E3      | Energy and Environmental Economics                |  |
| ELCC    | Effective load carrying capability                |  |
| EPR     | 2023 Electric Progress Report                     |  |
| EV      | Electric vehicle                                  |  |
| IAP2    | International Association of Public Participation |  |
| IRP     | Integrated Resource Plan                          |  |
| LOLE    | Loss of load expectation                          |  |
| LOLP    | Loss of load probability                          |  |
| MW      | Megawatt                                          |  |
| PG&E    | Pacific Gas and Electric                          |  |
| PRM     | Planning reserve margin                           |  |
| PUD     | Public utility district                           |  |
| RA      | Resource adequacy                                 |  |
| RPAG    | Resource Planning Advisory Group                  |  |
| SCGHG   | Social cost of greenhouse gas                     |  |



## **Appendix**





## Energy + Environmental Economics (E3)



#### Technical and Strategic Consulting for the Clean Energy Transition

#### $\sim 90$ consultants across 4 offices with expertise in energy economics, policy, modeling



San Francisco



New York



Boston



Calgary

#### **Recent Projects**

- Resource Adequacy in the Desert Southwest E3 conducted a study to examine reliability in the Southwest and identify best practices for resource adequacy that will provide a durable foundation for utilities' planning efforts to preserve reliability in the region
  - Lower Snake River Dams Power Replacement Study E3 evaluated options for replacing power from the Lower Snake River dams across a wide range of scenarios. E3 developed alternative resource portfolios and estimated costs across these scenarios
  - NorthWestern Energy Capacity Contribution Accreditation E3 supported NWE's 2019 Resource Procurement Plan by calculating ELCCs to use for capacity accreditation

#### 250+ projects per year across diverse topic areas

## What is resource adequacy?

- Resource adequacy is a measure of the ability of a portfolio of generation resources to meet load across a wide range of system conditions, accounting for supply & demand variability
- + No system is planned to achieve a perfect level of adequacy
  - The most common standard used throughout North America is a "oneday-in-ten-year" standard
  - For the PSE's 2025 IRP, E3 performed modeling for both a 5% LOLP standard (up to 1 year with loss of load every 20 years) and 0.1 LOLE standard (up to 1 loss of load event every 10 years)





**NERC Definition of Resource Adequacy:** "The ability of supply-side and demand-side resources to meet the aggregate electrical demand (including losses)"

Source: <u>NERC Glossary of Terms</u>



#### Planners are increasingly using LOLP models to support enhancements to resource adequacy

Develop a representation of the loads and resources of an electric system in a loss of load probability model

LOLP modeling allows a utility to evaluate resource adequacy across all hours of the year under a broad range of weather conditions, producing statistical measures of the risk of loss of load



Identify the amount of perfect capacity needed to achieve the desired level of reliability

Factors that impact the amount of perfect capacity needed include load & weather variability, operating reserve needs



#### **Outputs:**

- Total Resource Need (TRN), in MW
- Planning Reserve Margin (PRM) = (TRN ÷ 1-in-2 peak load) - 1



ELCC measures a resource's contribution to the system's needs relative to perfect capacity, accounting for its limitations and constraints

Marginal Effective Load Carrying Capability (%)

Perfect Capacity



#### **Outputs:**

 Individual resource Effective Load-Carrying Capacity (ELCC), in MW and % of nameplate

#### Impact of PNW Capacity Balance on PSE Imports Availability (Model G example)



Model G has substantial amount of market purchase curtailment in winter when PNW is not modeled at 5% LOLP, making winter mornings a risky period in PSE system