
Resource Planning Advisory Group meeting

2025 Integrated Resource Plan

April 17, 2024

Safety moment

April is Distracted Driving Awareness Month

- Cell phone use is the most common distraction to drivers
- Pull over and park or use a "designated texter" if you need to send a message
- WA state law requires drivers to use hands-free devices (like Bluetooth)
- Cell phone violations are reported to insurance and tickets are hefty!

Facilitator requests

- Engage constructively and courteously towards all participants
- Take space and make space
- Respect the role of the facilitator to guide the group process
- Avoid use of acronyms and explain technical questions
- Use the Feedback Form for additional input to PSE
- Aim to focus on the meeting topic
- Public comments will occur after PSE's presentations

Today's speakers

Sophie Glass Facilitator, Triangle Associates

Phillip Popoff Director, Resource Planning Analytics, PSE

Lorin Molander

Manager, Load Forecasting and Analysis, PSE

Gavin Aiello Guidehouse

Jeff Tripp Manager, Strategic Program Initiatives, PSE

Tom Smith

Product Development Manager, Residential Demand Response

Aquila Velonis Cadmus Group

Agenda

Time	AgendaItem	Presenter / Facilitator		
12:00 p.m. – 12:05 p.m.	Introduction and agenda review	Sophie Glass, Triangle Associates		
12:05 p.m. – 12:10 p.m.	Feedbacksummary	Phillip Popoff, PSE		
12:10 p.m. – 12:55 p.m.	Electric vehicle forecast	Lorin Molander, PSE Gavin Aiello, Guidehouse		
12:55 p.m 1:25 p.m.	Demand response programs	Jeff Tripp, PSE Tom Smith, PSE		
1:25 p.m 1:30 p.m.	Break	All		
1:30 p.m 2:50 p.m.	Conservation potential assessment results	Aquila Velonis, Cadmus Group		
2:50 p.m 3:00 p.m.	Next steps and public comment opportunity	Sophie Glass, Triangle Associates		
3:00 p.m.	Adjourn	All		

Feedback summary

Phillip Popoff, PSE

March 12 RPAG meeting feedback summary

Public feedback included:

- How PSE should reflect social cost of greenhouse gas (SCGHG) in the 2025 IRP
- Model ELCCs for hybrid systems

RPAG feedback included:

- Addressing transmission constraints in 2025 IRP
- Request for additional information about expiration of PG&E exchange
- Clarification from Commission staff regarding modeling approaches for SCGHG

Electric vehicle forecast

Lorin Molander, PSE



Background

System Level Electric: Forecast of Winter Peak demand before additional DSR from the 2025 IRP

Units: MW Data Sources: Load Forecast models Notes: No new DSR after committed 2 year targets 10,000 9,000 Draft 2025 IRP Jan 2024 2025 IRP 8,000 7,000 2023 EPR 6,000 **Electric Vehicles** 5,000 4,000 3,000 Winter Peak Demand Forecast before EVs 2,000 1,000 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050

IAP2 Spectrum

INCREASING IMPACT ON THE DECISION

© International Association for Public Participation iap2.org

PSE F24 EV Forecast

RPAG - Results Presentation

April 17, 2024

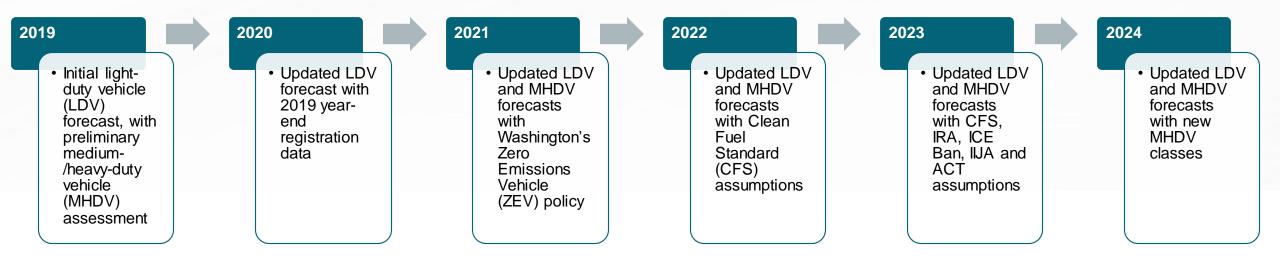
Prepared for Puget Sound Energy

Agenda

01	Executive Summary
02	Background
03	Overview of Methodology
04	Scenario Analysis
05	Q&A

Appendices

Executive Summary


PSE F24 EV Forecast Overview

Guidehouse forecasted EV adoption, their associated EVSE need and load impacts within PSE's Service Area through 2050 across 3 adoption scenarios and 3 managed charging scenarios.

EV Adoption	Charging Needs	Load Impacts	Managed Charging		
Forecast battery-electric (BEV) and plug-in hybrid (PHEV) EV adoption for Light-, Medium- and Heavy-Duty Vehicles	Forecast charging infrastructure needs associated with EV adoption across charging use case and technology	Forecast monthly energy requirements to support EV adoption within PSE's service area	Develop average daily weekday and weekend load shapes associated with different levels of managed charging uptake Unmanaged Charging Scenario		
Aggressive Scenario					
	Base	Scenario			
	Conservat	ive Scenario			

Background

Guidehouse has supported PSE in EV forecasting since 2019

Base Scenario EV Adoption & Load Impacts

By 2050, 2.6 million EVs are forecasted in PSE's Service Area (71% of the total vehicle population), requiring 9.2k GWh of energy with an annual EV peak before losses forecasted to hit 1,800 MWs

- By 2050, Light-duty (LD) EVs represent 97% of the total EV population
- The Base Scenario forecast is heavily impacted by policy assumptions, specifically that sales targets under the Advanced Clean Cars II and Advanced Clean Trucks are achieved

Guidehouse 人 Outwit Complexity

- **MHDVs**, while only 3% of the total number of EVs, are forecasted to represent 34% of the required energy needs due to larger batteries, lower efficiencies and more demanding duty-cycles
- The peak load associated with EV charging occurs between 7:00 and 8:00 **PM** for most years
- The peak is driven by **residential** charging for LDVs and depot charging for MHDVs

* The Annual EV Peak Before Losses is not coincident with PSE's system peak and occurs at the customer's meter.

1,800

1,062

738

2050

1,612

1,007

605

2045

Market Trend: EV Sales in 2023 Up 50% Compared to 2022 but Lingering Uncertainty Led to Slower Sales in Q4 2023

EV Market tailwinds driven by federal and state policy and OEM announcements saw EV sales for Q1, Q2 and Q3 of 2023 up by ~60% YoY compared to 2022 EV sales

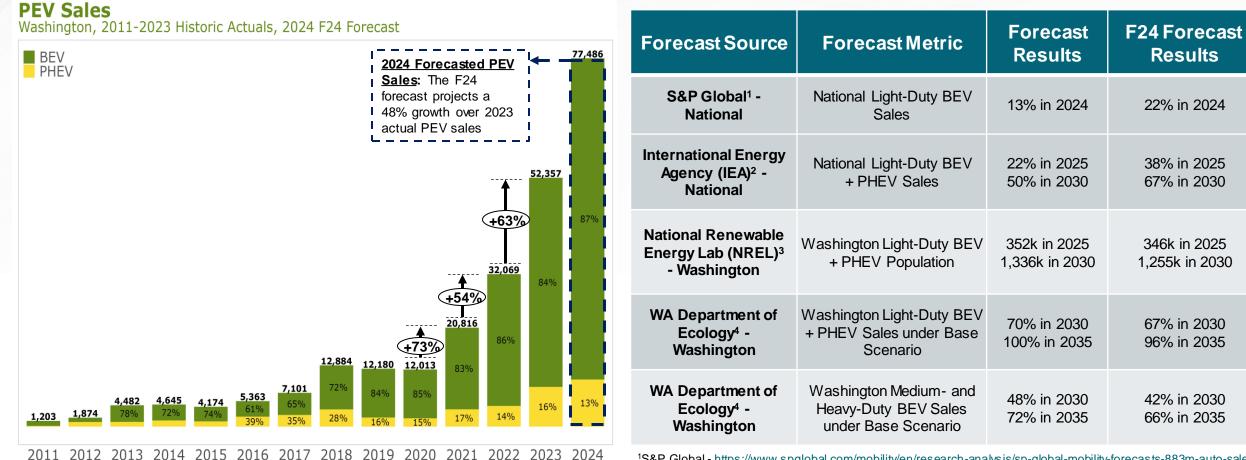
Favorable Federal and State Policies

- Infrastructure Investment and Jobs Act (IIJA)
- Inflation Reduction Act (IRA)
- EPA limits on tailpipe emissions
- WA Advanced Clean Cars II
- WA Advanced Clean Trucks
- WA Clean Fuel Standard

OEM EV Investment and Goals

- By the end of 2022, OEMs, including Toyota, Nissan and Volkswagen, had announced over \$1.2 trillion in investments for EVs
- GM, Ford and Hyundai set EV sales targets of 50% of new vehicles sold by 2030

EV Market headwinds driven by concerns over industry job loss, infrastructure and lower customer demand has led to monthly YoY EV sales growth falling to approximately 30% for the last quarter of 2023


Pushback and Slowdown on Policies

- United Auto Workers and auto dealers have petitioned President Biden to slow down EV transition over concerns of job loss and readiness
- Some ZEV states, such as CT, have reversed position on sales mandates

OEM Delays in EV Transition

- Ford postponed building of \$12B EV battery plant in Kentucky
- Rivian paused building of \$5B factory in Georgia
- GM delayed construction of EV drive plant in Ohio and reduced 2024 EV production targets

Historic Sales and National/State EV Forecast Benchmarks

¹S&P Global - <u>https://www.spglobal.com/mobility/en/research-analysis/sp-global-mobility-forecasts-883m-auto-sales-in-2024.html</u>

²IEA - https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer

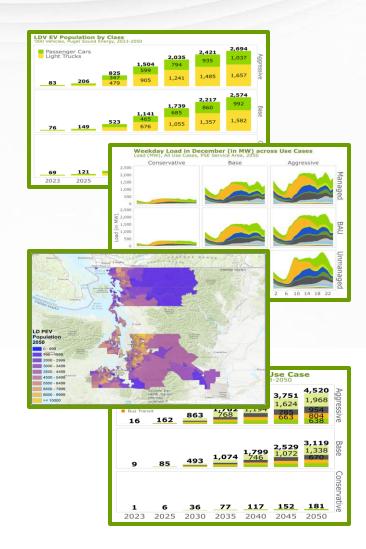
³NREL - https://data.nrel.gov/submissions/214 ⁴WA DoE -

https://public.tableau.com/app/profile/waevcouncil/viz/WashingtonTransportationElectrificationStrategy/Story_Publish

Key Takeaways

EV adoption and associated energy requirements in PSE's service area are expected to grow significantly: An average of 330 GWh per year of load is estimated to be added to the PSE system (2024-2050) due to EV adoption.

Policy-defined sales targets have greatest impact: The assumption that WA will hit sales targets established under the ACC and ACT drives very high EV adoption, but it is not certain whether these targets will be achieved.


The magnitude of the energy requirements associated with EVs may vary: While EVs will introduce a substantial amount of energy to the PSE system, uncertainty regarding the success of sales targets, VMT associated with EVs, and fuel efficiency lead to a wide range of how much energy will be needed.

Uncertainty in LDV forecasts related to home charging: As more individuals without access to home charging adopt EVs, dependence on workplace and public market charging will likely grow.

_?

Uncertainty in MHDV forecasts related to unknown market behavior: As a nascent market, it is still unclear what the charging needs and behavior may be for large vehicles (e.g., Long-Haul trucks) as duty-cycle, battery efficiency, and use of in depot vs en route charging are not yet well-established.

VAST Overview

VAST Suite Overview

Guidehouse's Vehicle Analytics & Simulation Tool (VAST) Suite uses in-house datasets and industry insights to provide market transparency as a single / repeatable source of truth for EV analysis needs.

6	EV Adoption	Ц Ц	EV Charging Ne	eds	<u>}</u>	EV Load Im	pacts	
 ✓ A ✓ A		Cuidehouse	Market Income Sites = 52 Sites = 276 Sites = 7	Mutti-Family Market Defension	e Utilization			
He	EV Market Assessm ow many vehicles are on by type and location	the road	Charging Infrastru What charging infrast Juired to support thes	ructure is	kW) at	the distributi	mpacts gy impacts (kWh, on system levels, ged charging?	
siness Use	Cases for VAST Solution	on Outputs						
	ransportation Electrification	♦ ← ● <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Load ForecastinCharging Infrast	•		Ĭ	Benefit-Cost ArRegulatory Filir	•

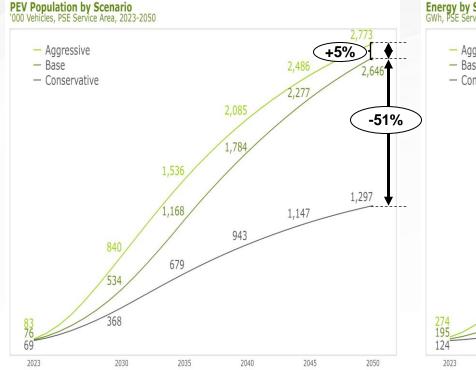
- Integrated Resource Planning
- **Distribution Planning**

Key Business

國

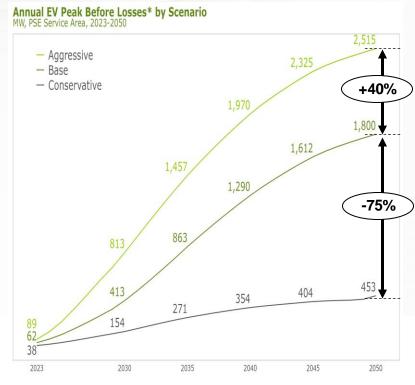
- Infrastructure Siting Analysis Customer Program Design

- sis
- & Rate Design
- Stakeholder Engagement ٠
- Economic Development Impacts


Scenario Analysis

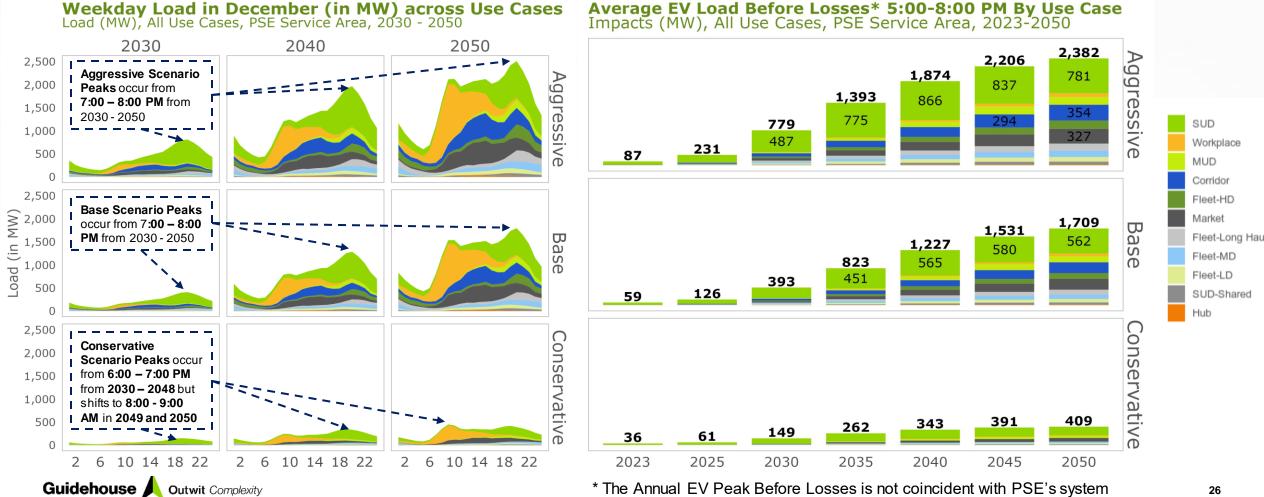
Scenario Definitions

Drivers	Description	Conservative Scenario	Base Scenario	Aggressive Scenario
s Incentives	Dollar per EV tax incentive (\$)	Any existing and planned incentives discontinued	Currently existing and planned incentive policies	Additional "cash on the hood" incentive per vehicle covering 50% of incremental cost of EV over ICEV
Vehicle Cost	EV MSRP (\$)	15% higher EV MSRP vs. base forecast (leading to increased EV operating costs)	Base EV MSRP forecast - GHI	15% lower EV MSRP vs. base forecast (leading to decreased EV operating costs)
Fuel Prices	Gasoline and diesel prices (\$ per gallon)	25% lower gasoline and diesel prices vs. base (leading to decreased operating ICEV costs)	AAA average base assumption, adjusted for inflation	75% higher gasoline and diesel prices vs. base (leading to increased operating ICEV costs)
Consumer Awareness & Acceptance	Marketing & outreach impacting customer familiarity (i.e., awareness, acceptance)	1/3 lower consumer awareness and acceptance vs. base (leading to decreased EV adoption)	Base assumption calibrated to Washington's historical consumer awareness metrics - GHI	1/3 higher consumer awareness and acceptance vs. base (leading to increased EV adoption)
A Regulations	Policies regulating ICEVs and EVs	Policy overturned or not met	Adoption consistent with Advanced Clean Cars II 2035 Targets	Adoption consistent with Department of Ecology's 2030 Targets
MHD Trucks	Assumptions on MHD Truck electrification	No HD Trucks and 40% Capped Market Share for MD Trucks	Adoption consistent with Advanced Clean Trucks 2035 Targets	Adoption consistent with Advanced Clean Trucks 2035 Targets
Vehicle Miles Traveled	Annual VMT by vehicle class and powertrain	30% lower VMT vs. base (leading to decreased energy requirement)	Base assumption from FHWA, EMFAC, EDF and AFDC	30% higher VMT vs. base (leading to increased energy requirement)


Scenario Comparison – PEV Population & Load Impacts

- Energy by Scenario GWh, PSE Service Area, 2023-2050 Aggressive Base Conservative +39% 7,753 5,837 -76% 3,628 3,179 2,218 1,949 1,590 1,601 1,123 2030 2035 2040 2045 2050
- Under the Base and Aggressive, the ACC and ACT are similarly implemented, and the scenarios differ by only 5% in 2050
- The Conservative Scenario decreased by 51% from the Base Scenario in 2050, driven primarily by the removal of the ACC and the elimination of HDV adoption

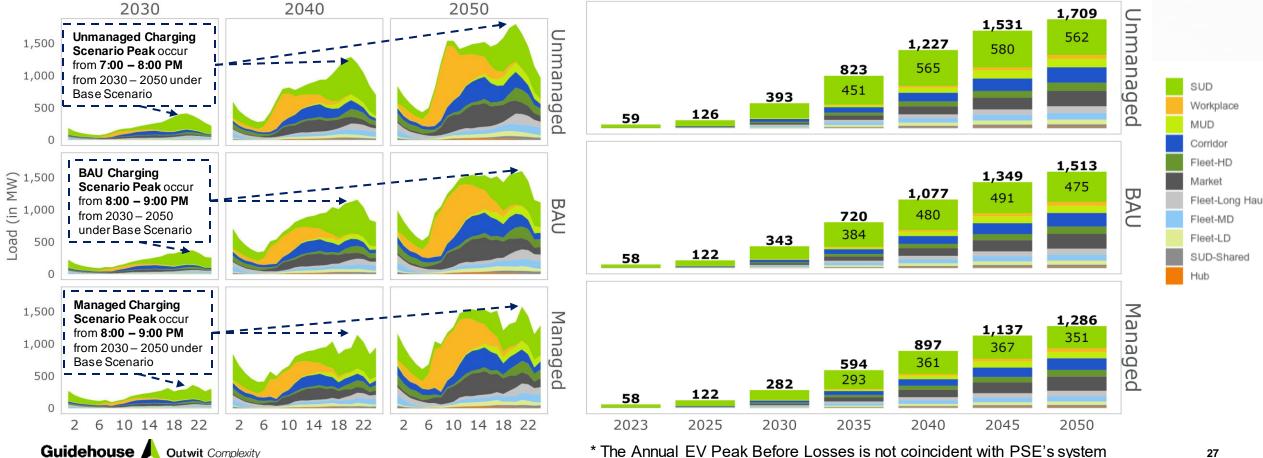
Guidehouse A Outwit Complexity


- The Energy Requirement under the Aggressive Scenario increased by 39% Base Scenario in 2050 driven primarily by a 30% increase in VMT
- The Energy Requirement **Conservative Scenario decreased by 76% the Base Scenario in 2050** driven by substantial decreases in PEV population and the 30% decrease in VMT

 Similarly to the Energy Requirement, Annual EV Peak Before Losses* is impacted by the 30% VMT adjustment and the decrease in PEV population, leading to a 40% increase in 2050 under the Aggressive Scenario and a 75% decrease in 2050 under the Conservative Scenario

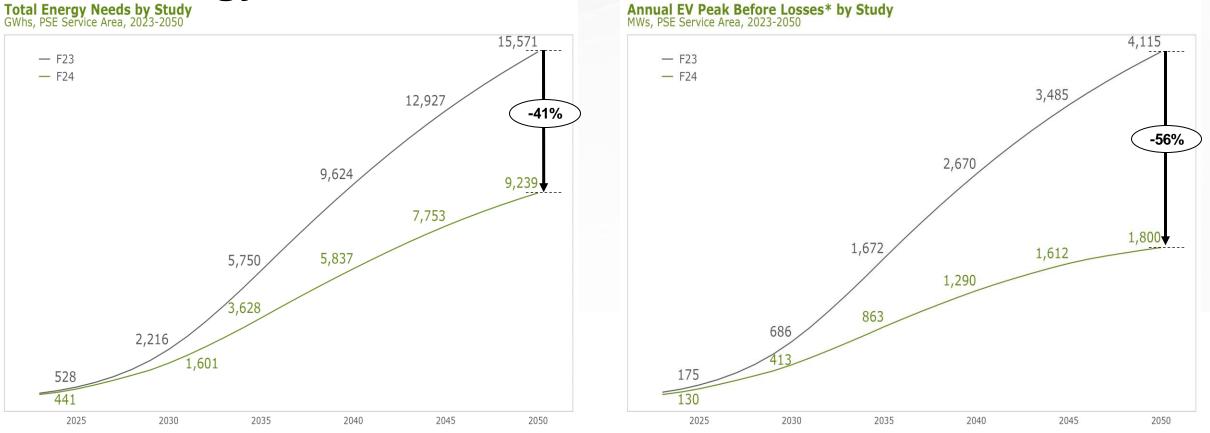
Average of EV Load before Losses* from 5:00 to 8:00 PM for Adoption Scenarios

By 2050, the average of EV Load before Losses* from 5:00 to 8:00 PM is forecasted to range from 409 MWs under the Conservative Scenario to 2,382 MWs under the Aggressive Scenario


* The Annual EV Peak Before Losses is not coincident with PSE's system peak and occurs at the customer's meter.

Average of EV Load before Losses* from 5:00 to 8:00 PM for Managed Charging Scenarios

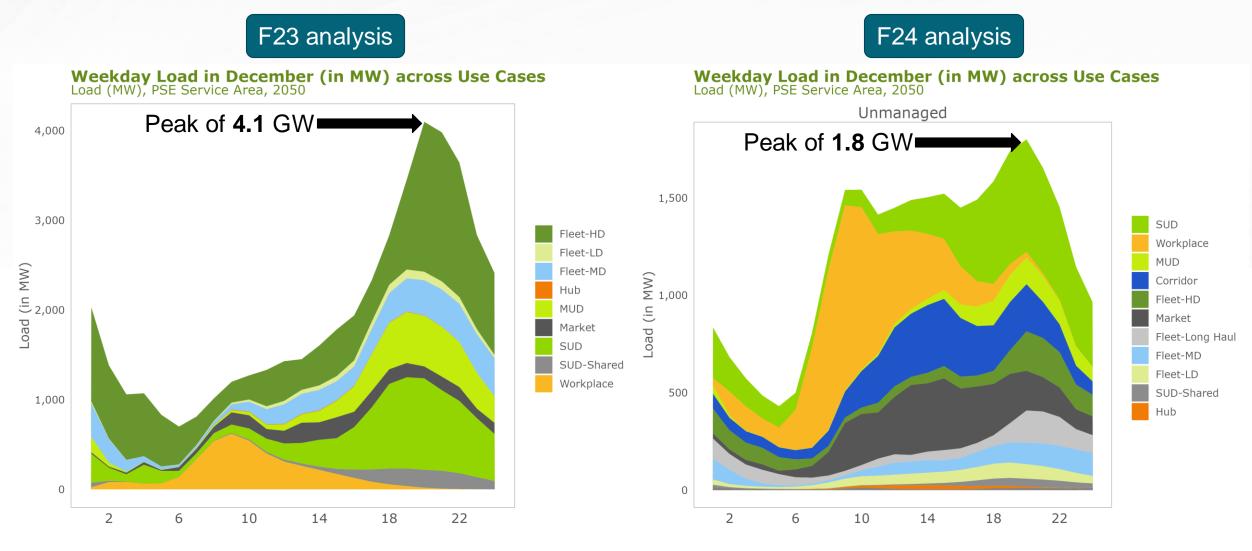
By 2050, under the Base adoption scenario, the average of EV Load before Losses* from 5:00 to 8:00 PM is forecasted to range from 1,286 MWs under the Managed Charging Scenario to 1,709 MWs under the Unmanaged Charging Scenario


Weekday Load in December (in MW) across Use Cases Load (MW), All Use Cases, PSE Service Area, 2030 - 2050

Average EV Load Before Losses* 5:00 - 8:00 PM By Use Case Impacts (MW), All Use Cases, PSE Service Area, 2023-2050

* The Annual EV Peak Before Losses is not coincident with PSE's system peak and occurs at the customer's meter.

F23 vs F24 EV Forecast – Total Energy & Annual EV Peak Before Losses



- F24 EV Forecast incorporated refinements to the vehicle miles traveled assumptions, specifically with relation to the Semi Truck and Delivery Truck classes
- F24 EV Forecast introduced the Long Haul and Short Haul classes, implemented to address variations of the Semi Truck driving needs and duty cycle

* The Annual EV Peak Before Losses is not coincident with PSE's system peak and occurs at the customer's meter.

Study load shape comparison

Corridor and charging access flattened the load shape

Demand response programs

Jeff Tripp, PSE Tom Smith, PSE

INCREASING IMPACT ON THE DECISION

© International Association for Public Participation

Demand response update

Timeline:

- 2021 CPA/IRP identified a DR capacity need of 23.66 MWs by 2025
- 2021 CEIP filed a target of 23.7 MWs by 2025
- 2022 DER RFP issued for 24 MWs of DR by 2025
- 2022 General Rate Case established a performance incentive mechanism (PIM) and threshold starting at 40 MWs by 2024
- 2022 PSE selected all cost-effective DR proposals
- 2023 CPA/IRP Electric Update identified additional DR capacity needs
- 2023 PSE contracted with their DR vendors from 2022 RFP proposals
- 2023 Started implementing DR programs
- 2023 CEIP update amended DR target to 86 MWs by 2025

Demand response program rollout timeline

33 RPAG Meeting – April 17, 2024

What flex programs are there?

flex smart ~19 MW

 Adds ~12k customers/year
 Customers receive rewards for <u>enrolling smart</u> <u>devices</u> in automatic energy reduction such as

- o Thermostats
- o EVs
- EV Chargers
- Water Heaters
- Residential Batteries

flex rewards $\sim 5 \text{ MW}$

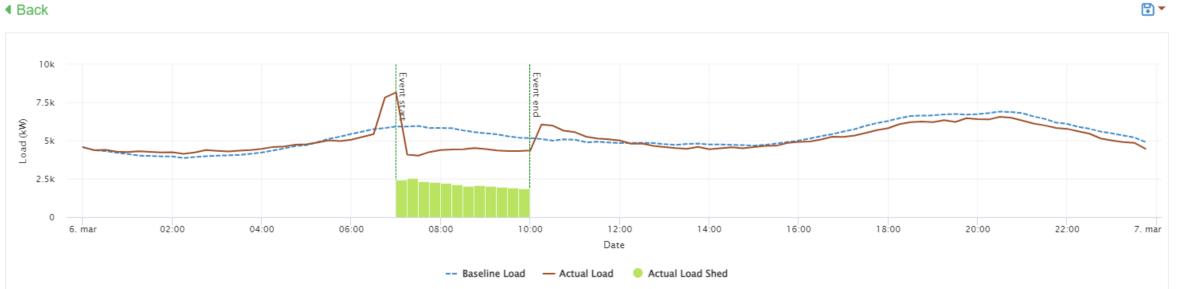
- Adds ~16k customers/year
- No smart device required
- Customers receive rewards for <u>manually reducing</u> their energy usage

FLEX EVENTS ~5 MW

Up to 500k customers
Customers notified and given tips on how to <u>reduce</u> <u>their energy</u> <u>usage</u>
Minimum 30% Named Community

penetration

business dr ~3 MW

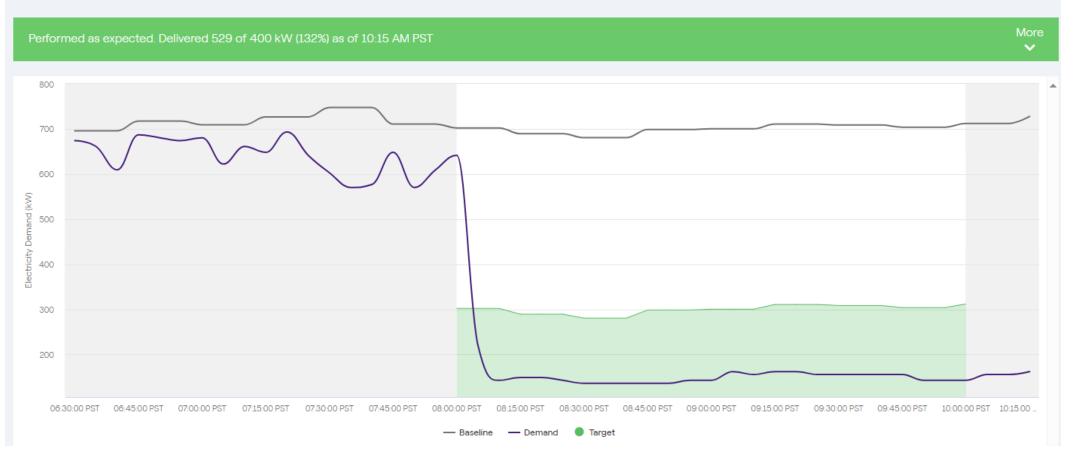

- Adds ~50 customers/year
- Businesses receive payments for participating in *personalized energy reduction plans*

Note: Nameplate capacities per program are as of 3/7/24.

Virtual power plant demand response events dispatched

Event Date	Forecast Shed (kW)	Avg Net Load Shed (kW)	% of Forecast	Programs Dispatched
12/22/2023	18,024	24,171	134%	Flex Smart, Flex Events, Flex Rewards
1/12/2024	24,170	22,748	94%	Flex Smart, Flex Events, Flex Rewards, Business Demand Response
1/17/2024	24,539	29,298	119%	Flex Smart, Flex Events, Flex Rewards
2/8/2024	19,918	25,335	127%	Flex Smart, Flex Events, Flex Rewards, Business Demand Response, Peak Time Rebates
2/16/2024	17,119	21,105	123%	Flex Smart, Flex Rewards, Peak Time Rebates
2/27/2024	28,876	28,695	99%	Flex Smart, Flex Events, Flex Rewards, Peak Time Rebates
3/6/2024	32,729	32,623	100%	Flex Smart, Flex Events, Flex Rewards, Business Demand Response, Peak Time Rebates

Ecobee flex event load curve


Event Info	pse-20240305-27-1R2BWY	Event Results
Event Date	Mar 6, 2024	
Start Time	07:00 AM	Tot
End Time	10:00 AM	
Duration	3 h	Actual
Notification Time		
Targeted Devices	5476	

Actual Load Shed (kW)	2160.24
Total Energy Reduction (kWh)	6480.70
Actual Load Shed (%)	38.60%
Actual Load Shed Per Meter (kW)	0.82
Actual Meter Count	2644
Opted Out Resources	0

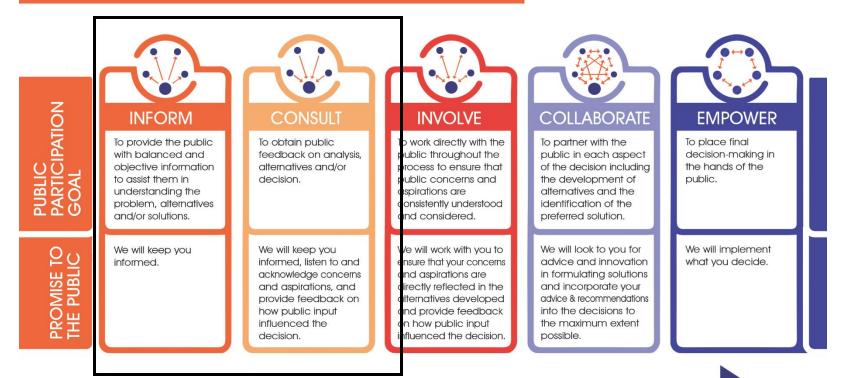
Cold storage customer flex event load curve

PSE cold storage customer - WA - US

Puget Sound Energy Business Demand Response Program Mar 6, 2024, 8:00 AM - 10:00 AM PST

Business demand response

EVSE and EV telematics went live March 7


CADMUS

2025 IRP: Conservation Potential Assessment

April 17, 2024

INCREASING IMPACT ON THE DECISION

© International Association for Public Participation

Agenda

- CPA Task Timeline
- Overview of the CPA Main Themes
- Energy Efficiency Methodology Overview
- Electric Energy Efficiency Potential
- Natural Gas Energy Efficiency Potential
- Demand Response Potential
- Rooftop Solar PV Potential

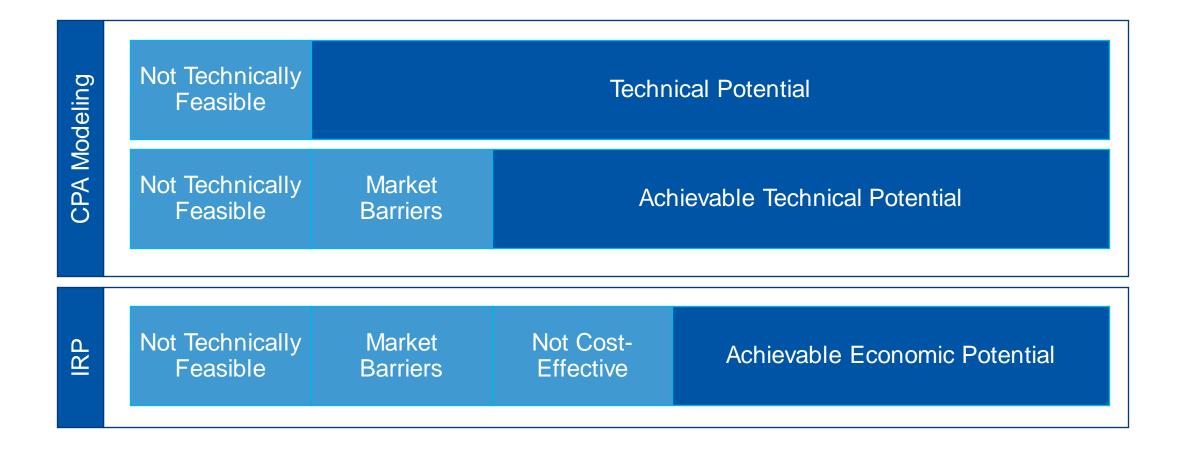
CPA Task Timeline							;		e, des Imptic	sign,	23					AG Mo Resu		g:		
CPA Item	Jul 2	3	Aug	j 23	Se	o 23	Oct	t a	Νον	/ 23	De	c 23	Jar	า 24	Fel	b 24	Ма		Apr	r 24
Kickoff and Project Management																				
PSE Program Staff Meetings and Consultation Meetings																			À	
Energy Efficiency Measure Data Compilation																				
Energy Efficiency Measure Characterization																				
Assessment of Energy Efficiency Potential																				
Assessment of Electrification Potential																				
Assessment of Combined Heat and Power Potential																				
Assessment of Rooftop Solar PV Potential																				
Assessment of Demand Response Potential																				
Develop IRP Inputs																				
Develop Locational IRP Inputs																				
Scenario Analysis																				
Interview Managers and Leadership (Process Evaluation)																				
Assessment of IRA Opportunities																				
Synthesis and Reporting																				

Overview of the CPA – Main Themes

Resources	Energy Efficiency (EE) Demand Response (DR) Solar PV Combined Heat and Power (CHP) Distribution Efficiency	Underserved Communities	Climate Change	IRA Research and Impacts
Fuels	Electric – EE, Solar PV, DR, CHP, Gas to Electric Natural Gas – EE, Gas to Electric	Codes and Standards / Non- Energy Impacts	Scenario Analysis, Locational Analysis & IRP Bundles	Program Research

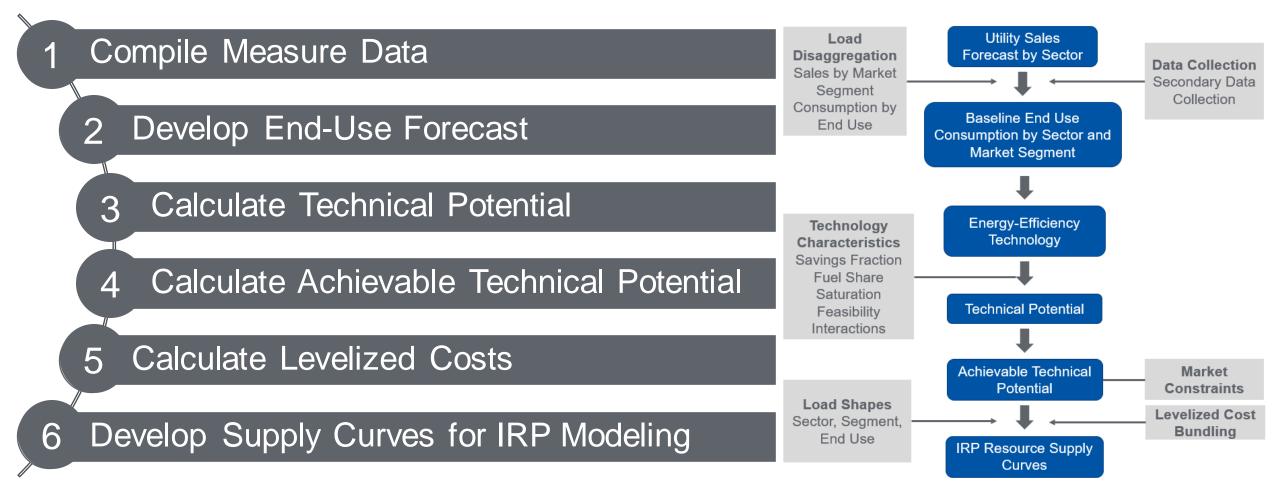
Blue = consistent with the prior CPA Green = new to this CPA

Results Expectations Today


Presentation contains **Reference Case Potential Only** That means...

- Potential relative to PSE's base case forecast
- Energy efficiency potential results <u>without</u> electrification impacts
- Electrification modeling in progress
- Potential results represents achievable technical potential (not economic)
- All results shown at the generator (unless specified)

Energy Efficiency Methodology Overview


Types of Energy Efficiency Potential

Energy Efficiency – Methodology Overview

Steps for estimating conservation potential

Energy Efficiency - Electric & Natural Gas

Estimating technical and achievable electric and natural gas 2026-2050 energy efficiency potential for PSE's residential, commercial, and industrial sectors (including streetlighting and indoor agriculture)

Federal, state, and local codes and standards – On-the-books state codes WSEC 2021 and RCW; on the-books federal standards and the 2029 gas furnace standard

All electric new construction – No natural gas load or potential in new construction in residential

Climate change – Impacts weather-sensitive measures

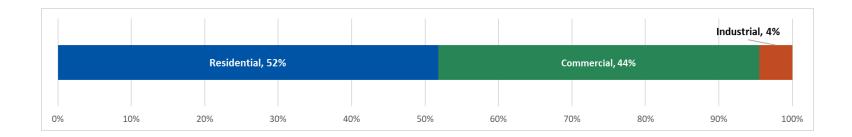
Non-energy impacts – A range of NEIs (e.g. health & safety, comfort, productivity, etc.); based on 2023/2024 Business Cases

Underserved Communities & Equity – Based on vulnerable population data

Ramp rate – Revised based on program research, PSE discussions, and IRA impacts

IRA impacts – Incentives and adoption rates based on IRA research

SOUND


Shared Potential Across Efficiency Tiers – Assume share between tiers (e.g. 50% CCHP, 50% ASHP upgrade) for select technologies

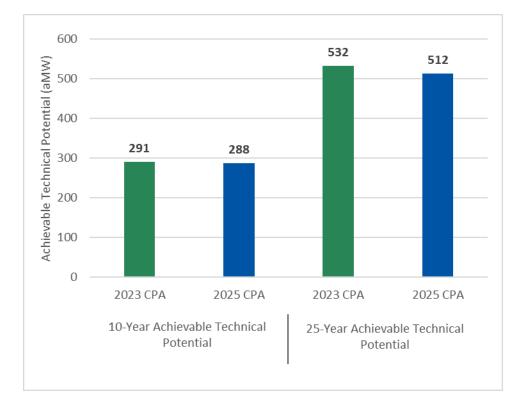
Electric Energy Efficiency Potential

Electric Energy Efficiency Potential

Achievable Technical Potential

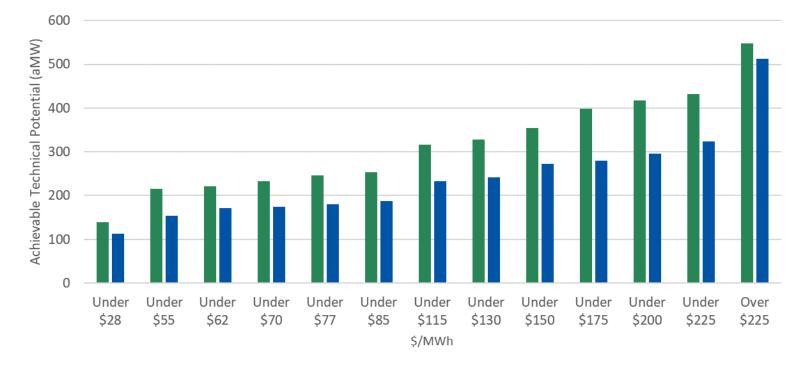
Sector	2-year (2026-2027)	4-year (2026 -2029)	10-year (2026-2035)	25-year (2026-2050)
Cumulative Acl	hievable Technical	Potential (aMW)		
Residential	18	37	115	266
Commercial	26	54	149	223
Industrial	5	9	23	23
Total	49	100	288	512

- Represents the cumulative achievable technical potential, not economic potential
- Less short-term retrofit measures available for residential than in the commercial sector


Comparison to 2023 CPA

10-year and 25-year Cumulative Electric Achievable Technical Potential (at generator)

1% decrease in 10-year total potential; 4% decrease in 25-year total potential

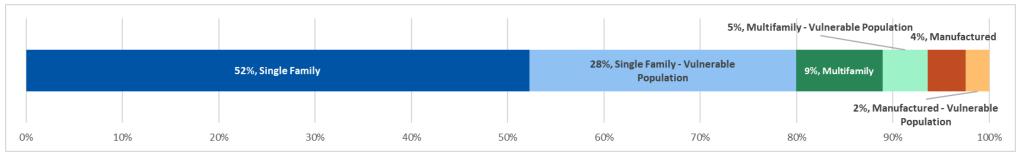

Sector	10-Year Techni EE Potent		25-Year Technical Achievable EE Potential (aMW)			
	2023 CPA	2025 CPA	2023 CPA	2025 CPA		
Residential	103	115	287	266		
Commercial	169	149	226	223		
Industrial	18	23	18	23		
Total	291	288	532	512		

The 2023 CPA study period covers 27 years. This table shows only the first 25 years for comparison purposes.

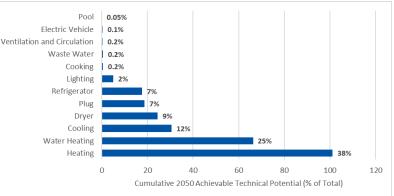
PUGET SOUND ENERGY

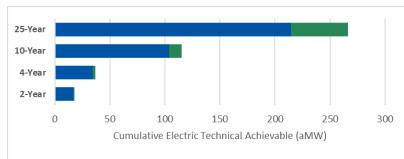
Comparison to 2023 CPA – Levelized Cost Bundles

2023 CPA Total 2025 CPA Total


Changes from 2023 CPA

- Added more expensive energy efficiency compared to the prior CPA (e.g., coldclimate heat pumps)
- Updates in line loss and global cost inputs (avoided T&D, discount rate, \$2026)




Residential Electric Energy Efficiency Potential

By Segment, End Use and Vintage

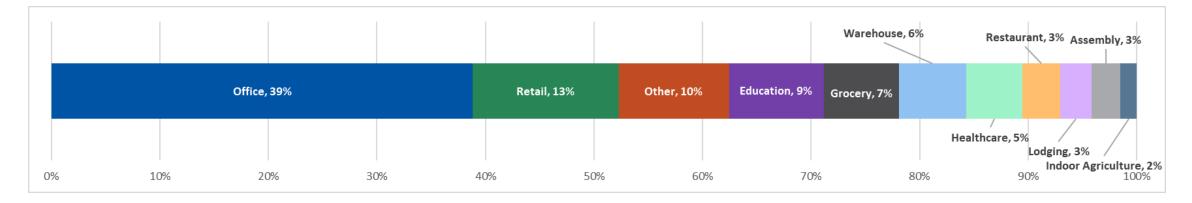
- Potential for vulnerable populations is 35% of the total residential achievable technical potential (92 aMW)
- Space and water heating end uses make 63% (167 aMW) of total residential achievable technical potential.
- New construction potential accelerates over time due to all-electric codes where heat pump equipment is required where there are upgrade opportunities to ccHP and heat pump water heaters

Existing New

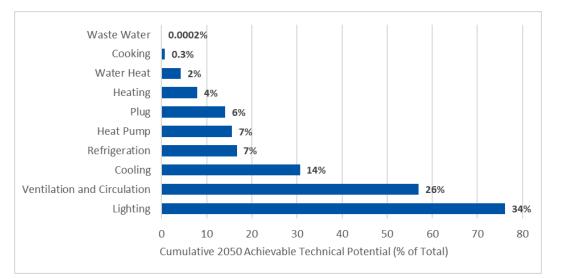
Top Electric Residential Measures

Cumulative Achievable Technical Potential (aMW)

Measure Name	10-Year	25-Year
Heat Pump Water Heater - Tier 4 - No Resistance, Split System	10.8	32.3
Cold Climate Ductless Heat Pump Heat Room Electric	8.0	25.0
Heat Pump Water Heater - Tier 3	7.8	22.8
Heat Pump Dryer	2.1	20.0
Cold Climate Ducted Heat Pump	2.9	14.7
Central Air Conditioner - Enhanced	3.4	11.5
Refrigerator - ENERGY STAR 2022 Most Efficient	3.8	10.2
Central Air Conditioner - ENERGY STAR 2022 Most Efficient	2.6	8.7
Set Top Box - ENERGY STAR	4.5	7.2
Zonal to Ductless Heat Pump	3.1	6.9
Window - Film	4.4	6.5
Cold Climate Ductless Heat Pump Heat Central Electric	2.1	5.7
Behavioral - Home Energy Reports	4.3	5.6
Window - Storm Window	4.0	4.8
Insulation - Attic	3.8	4.6


Changes from the 2023 CPA

- PSE Business Case updates
- RTF updates for selected measures (lighting, water heaters, weatherization)
- Added cold climate heat pump measures
- Accounted for recent PSE program accomplishments and projected through 2025
- Updates to reflect WSEC 2021 and latest RCW
 - All electric new construction
 - Circulator pump controls required in SF new construction
- Updated ramp rates to better align with PSE programs
- Accounted for IRA incentives and their impact on measure adoption
- Shared potential across efficiency tiers assuming an even split (e.g., 50% CCHP, 50% ASHP upgrade)
- Updates in line loss and global cost inputs (avoided T&D, discount rate, \$2026)


Commercial Electric Energy Efficiency Potential

By Building Type and End Use

Lighting and Ventilation Circulation end uses make 60% (133 aMW) of total commercial achievable technical potential.

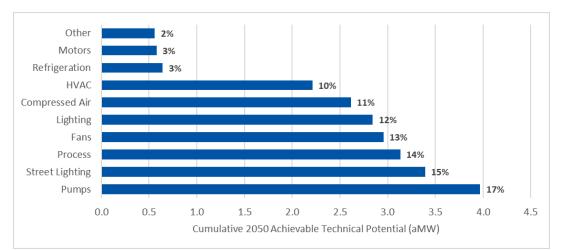
Heat pump potential is significantly higher (4x) than in the prior study, driven by WSEC requiring heat pumps for most Commercial new construction.

Top Electric Commercial Measures

Cumulative Achievable Technical Potential (aMW)

Measure Name	10-Year	25-Year
Lighting - Interior - Control	37.4	42.7
Lighting - Interior - LED	16.2	16.3
Fan - VSD	3.3	15.2
Window - Upgrade	12.7	12.7
Cooling DX	2.6	12.0
Very High Efficiency Dedicated Outside Air System (DOAS)	1.3	10.4
Exit Sign	8.2	8.2
Rooftop HVAC Controls - Advanced	3.8	7.8
Heat Pump	1.9	7.8
Pump - Efficient	3.7	7.3
Fan - Efficient	2.6	6.5
Server - Efficient	5.5	6.2
Lighting - Exterior - LED	5.2	5.8
Re-Commissioning	4.0	4.9
Energy Management System	3.9	4.4

Changes from 2023 CPA


- PSE Business Case updates
- RTF updates for selected measures (pumps, fans, water heaters, weatherization, display case lighting)
- Updates to reflect WSEC 2021 and latest RCW
- Accounted for recent PSE program
 accomplishments and projected through 2025
- Updated ramp rates to better align with PSE programs
- Updates in line loss and global cost inputs (avoided T&D, discount rate, \$2026)

Top Electric Industrial Measures

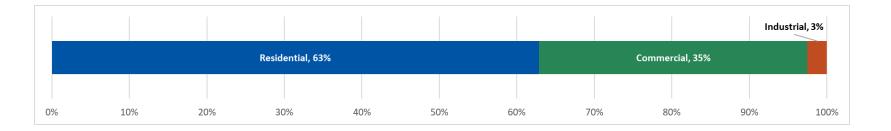
Cumulative Achievable Technical Potential (aMW)

Measure Name	10-Year	25-Year
Wastewater	3.3	3.3
Energy Management	2.8	2.8
HVAC	1.6	1.6
Lighting Controls	1.6	1.6
Streetlight - HPS 100W - Group Relamp - to LED 38W - Retro	1.4	1.4
Energy Management2	1.3	1.3
Streetlight - HPS 100W - Group Relamp - to LED 53W - Retro	1.1	1.1
Air Compressor Equipment	1.0	1.0
Pump Optimization	0.9	0.9
Advanced Motors - Material Processing	0.9	0.9
Fan Equipment Upgrade	0.8	0.8
WaterSupply	0.7	0.7
Air Compressor Variable Speed	0.6	0.6
Advanced Motors - Material Handling	0.5	0.5
Streetlight - HPS 250W - Group Relamp - to LED 159W - Retro	0.5	0.5

Measure Changes from the 2023 CPA

- Added streetlighting network control measure
- Updates in line loss and global cost inputs (avoided T&D, discount rate, \$2026)

"Energy Management" represents the standard SEM in mostly large industrial facilities. "Energy Management2" represents a more difficult share of SEM potential likely found in smaller facilities, and therefore more difficult and expensive to achieve.

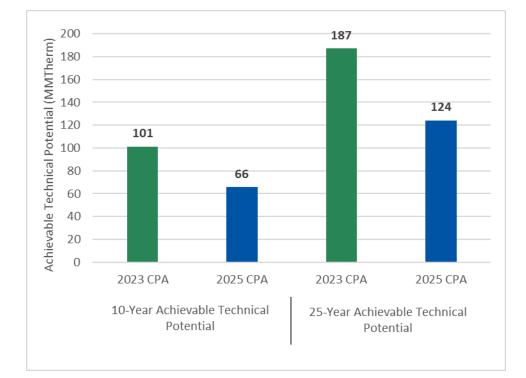

Natural Gas Energy Efficiency Potential

Natural Gas Energy Efficiency Potential

Achievable Technical Potential

Sector	2-year (2026-2027)	4-year (2026 -2029)	10-year (2026-2035)	25-year (2026-2050)			
Cumulative Achievable Technical Potential (MMTherm)							
Residential	4	8	32	78			
Commercial	5	12	31	43			
Industrial	0.6	1.2	3.1	3.1			
Total	10	21	66	124			

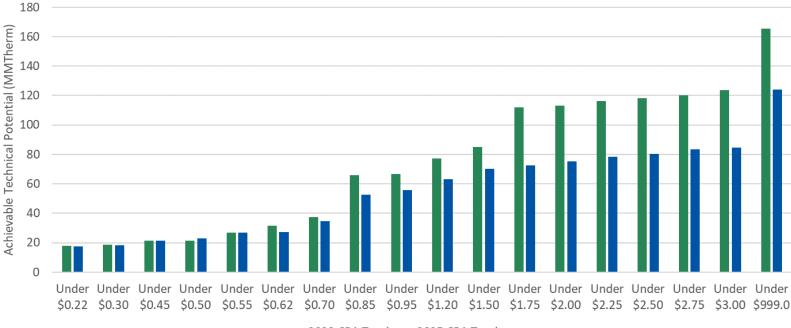
Represents the cumulative achievable technical potential, not economic potential



Comparison to 2023 CPA

10-year and 25-year Cumulative Natural Gas Achievable Technical Potential (at generator)

35% decrease in 10-year total potential; 34% decrease in 25-year total potential


Sector	10-Year Techni EE Potential		25-Year Technical Achievable EE Potential (MMTherm)			
	2023 CPA	2025 CPA	2023 CPA	2025 CPA		
Residential	59	32	107	78		
Commercial	39	31	50	43		
Industrial	3	3	3	3		
Total	101	66	187	124		

The 2023 CPA study period was 27 years. This table shows only the first 25 years for comparison purposes.

Comparison to 2023 CPA – Levelized Cost Bundles

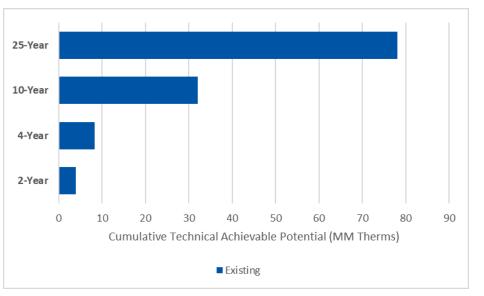
■ 2023 CPA Total ■ 2025 CPA Total

Changes from 2023 CPA

- Similar lower cost potential but less overall potential due to furnace standard (2029) impacting the more expensive bins with equipment measures
- Updates in line loss and global cost inputs (avoided T&D, discount rate, \$2026)

Residential Natural Gas Energy Efficiency Potential

By Segment, Construction Vintage, and End Use


								0.01 0.03%, Manufactured —	%, Manufactured - Vulne	rable Population
			75%	%, Single Family				25%, Single Family -	Vulnerable Population	
								0.16%, Multifamily — 0.1	.2%, Multifamily - Vulner	able Population
0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%

Potential for vulnerable populations is 25% of the total residential achievable technical potential (19 MM Therms)

Almost all residential potential is within single family homes

No new construction potential

End Use	25-Year Achievable Technical Potential (MM Therm)
Heating	47
Water Heating	31
Dryer	0.3
Cooking	0.3
Pool	0.2
Total	78

Top Natural Gas Residential Measures

Cumulative Achievable Technical Potential (MM Therm)

Measure Name	10-Year	25-Year
Water Heater - ENERGY STAR Tankless	2.4	19.3
Smart Thermostat	2.7	7.8
Furnace - Premium Efficiency	0.6	7.6
Integrated Space and Water Heating	1.4	7.2
Duct Sealing	2.1	6.3
Window - Storm Window	4.3	5.2
Insulation – Attic	4.1	4.9
Insulation – Wall	4.0	4.8
Windows	2.1	2.5
Duct Insulation	1.6	1.9
HVAC Tune-up	0.6	1.2
Behavioral - Home Energy Reports	1.0	1.0
Insulation – Floor	0.8	1.0
Water Heater - Tank Wrap	0.6	1.0
Tub Spout	0.3	1.0


Changes from the 2023 CPA

- Less overall potential due to no-growth load forecast and updated measures
 - No new construction potential
 - Less potential for gas furnaces incorporating 2029 furnace standard; lower unit energy savings due to aligning with PSE evaluation;
 - PSE Business Case updates
 - RTF updates for selected measures (water heaters, weatherization)
- Ramp rate updates
- Updates in line loss and global cost inputs (avoided T&D, discount rate, \$2026)

C&I Natural Gas Energy Efficiency Potential

By Building Type and End Use

Commercial

End Use	25-Year Achievable Technical Potential (MM Therm)
Heating	34
Cooking	5
Water Heat	4
Pool	0.01
Total	43

Industrial

End Use	25-Year Achievable Technical Potential (MM Therm)
Process	2
Boiler	1
HVAC	0.40
Other	0.03
Total	3

Top Natural Gas C&I Measures

Cumulative Achievable Technical Potential (MM Therm)

Commercial Measure Name	10-Year	25-Year
Re-Commissioning	6.5	7.8
Energy Management System	5.0	5.6
Window - Secondary Glazing	4.4	4.4
Weatherization - Attic/Roof Insulation	1.7	3.3
Pipe Insulation - Space Heat	2.6	2.9
Water Heat LE 55 Gal	0.3	2.9
Fryer	0.7	2.2
Space Heat - Gas Boiler	1.1	1.9
Kitchen Hood - Demand Controlled Ventilation	1.1	1.8
Strategic Energy Management	1.5	1.5

Industrial Measure Name	10-Year	25-Year
Waste Heat From Hot Flue Gases To Preheat	0.48	0.48
Process Improvements To Reduce Energy Requirements	0.44	0.44
Heat Recovery And Waste Heat For Process	0.42	0.42
Thermal Systems Reduce Infiltration; Isolate Hot Or Cold Equipment	0.27	0.27
Improve Combustion Control Capability And Air Flow	0.20	0.20
Equipment Upgrade - Boiler Replacement	0.15	0.15
Equipment Upgrade - Replace Existing HVAC Unit With High Efficiency Model	0.15	0.15
HVAC Equipment Scheduling Improvements - HVAC Controls, Timers Or Thermostats	0.10	0.10
Analyze Flue Gas For Proper Air/Fuel Ratio	0.09	0.09
Thermal Systems Add Insulation To Equipment	0.09	0.09

Commercial Changes from the 2023 CPA

- Less overall potential due to limitedgrowth load forecast and updated measures
 - Much less new construction potential
 - 2029 furnace standard (impacts small commercial)
 - Updates to reflect WSEC 2021 and latest RCW (notably cooking equipment)
- PSE Business Case updates
- RTF updates for selected measures (weatherization)
- Ramp rate updates
- Program accomplishments through 2025
- Updates to global cost inputs

Demand Response Potential

Demand Response

Estimated the technical and achievable potential for the **demand response options of** reducing peak load in both winter and summer.

Residential	Commercial and Industrial
 Direct load control (DLC) for space heating / central cooling - smart thermostats DLC for electric resistance water heating (grid-connected and grid-enabled) DLC for heat pump water heating (grid-connected and grid-enabled) Electric vehicle (EV) supply equipment DLC 	 Small commercial DLC for space heating / central cooling - smart thermostats Commercial curtailment Industrial curtailment Commercial critical peak pricing (CPP) Industrial CPP
 NEW IN 2025 CPA EV managed charging Time of use (TOU) Peak time rebates Behavioral DR 	 NEW IN 2025 CPA Commercial TOU Medium/Heavy duty EV DLC EV fleet managed charging

Changes from the 2023 CPA

Updated residential EV forecast - Current 2025 CPA forecast estimates roughly doubles EVs in 2050 as compared to 2023 CPA forecast which was roughly 660,000 EVs in 2050

New nonresidential EV forecast of light-duty, medium-duty, and heavy-duty of commercial fleet, transit, long-haul trucks, etc.

Updated fuel share and saturations for HVAC and water heating equipment - 2025 CPA more accurately tied EE end use forecast to calculate weighted average of existing and new construction annually. 2023 CPA largely used existing construction values only.

Updated T&D Deferral Value (\$109.36/\$87.49 per kW-Year summer/winter in 2025 CPA vs \$74.70 per kW-Year in 2023 CPA)

Updated line loss (8.14% in 2025 CPA vs 7.80% in 2023 CPA)

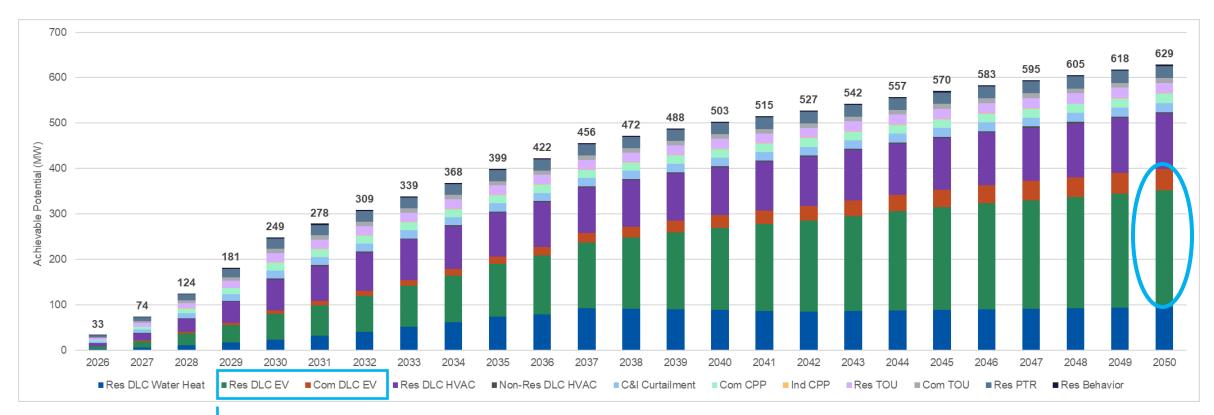
2025 Modeled Peak Definition: Winter: December Weekdays HE 8 to HE 10 (7:01 – 10 am) HE 18 to HE 20 (5:01 – 8 pm) Summer: July through August Weekdays HE 17 to HE 20 (4:01 – 8 pm) 2023 Modeled Peak Definition: Winter: December Weekdays HE 8 to HE 10 (7:01 – 10 am) HE 18 to HE 19 (5:01 – 7 pm) Summer: July through August Weekdays HE 17 to HE 18 (4:01 – 6 pm)

DR Potential Details for Selected Products

	Residential	Commercial and Industrial
Developed Hourly Results	Residential EV Managed Charging	Commercial EV Managed Charging
(8760s for 2026-2050) for six	Residential EV DLC	Commercial MDV/HDV EV DLC
EV and TOU Products	Residential TOU	Commercial TOU

EV Analysis

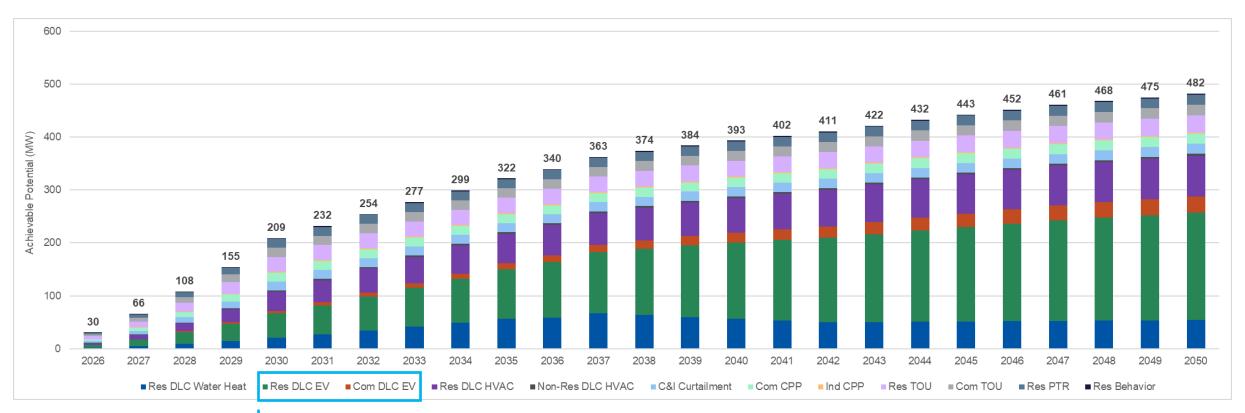
- Analysis follows estimated percent shift by use case, duty, ownership type and charger type using FY24 forecasts of unmanaged and managed load (developed by Guidehouse for PSE)
- Cadmus applies new participation assumptions to reflect program design opt-in scenario (ranging from 15%-25%), and 5-year ramp (aligns with Council assumptions)
- DLC assumes 10 events per season (winter/summer) to be controlled by PSE
- Managed EV assumes daily shifts (TOU/telematics)


TOU Analysis

- TOU follows PSE TOU peak hours for residential and commercial, and uses % reduction based on benchmarked data (Council and PGE TOU evaluation)
- Applied TOU reduction to projected annual loads, shaped by historical PSE hourly data (2021)
- 0.5% total energy savings assumed for residential and 0.2% assumed for commercial

Overview of Winter Results

Total 25-Year Demand Response Potential, by Year and Product Group



EV DR from DLC switch and managed charging represents 48% of the total winter DR potential

Overview of Summer Results

Total 25-Year Demand Response Potential, by Year and Product Group

EV DR from DLC switch and managed charging represents 48% of the total summer DR potential

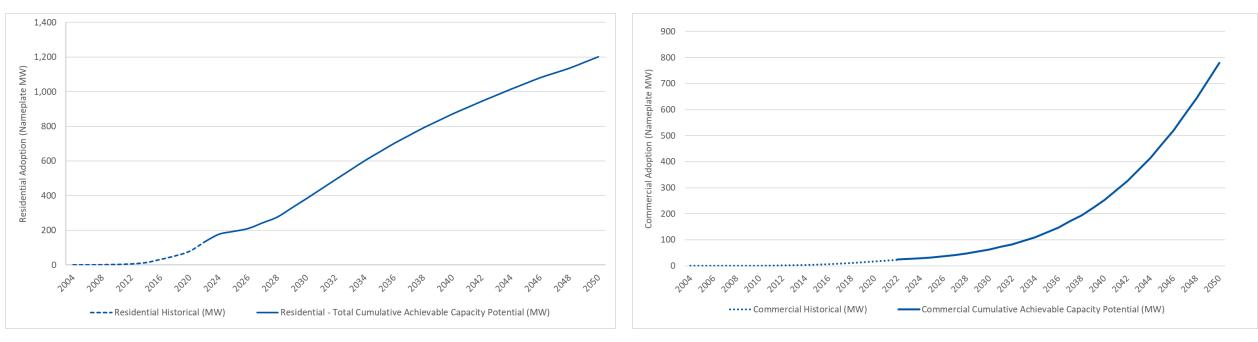
Comparison to the 2023 CPA

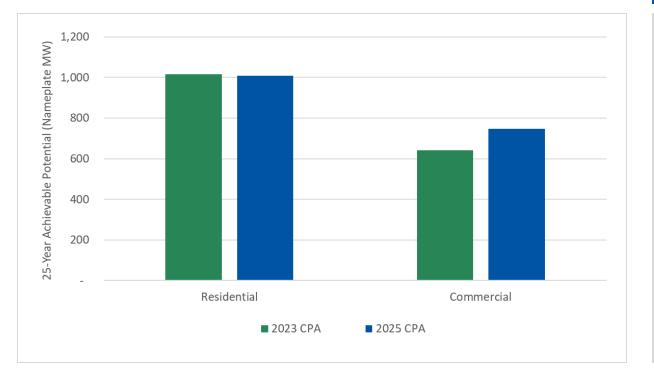
	Winter			Summer				
	2023 DRPA Achievab	le Potential in 2050	2025 DRPA Achievable Potential in 2050		2023 DRPA Achievable Potential in 2050		2025 DRPA Achievable Potential in 2050	
Product Option	Achievable Potential	Levelized Cost (\$/kW-	Achievable Potential	Levelized Cost (\$/kW-	Achievable Potential	Levelized Cost (\$/kW-	Achievable Potential	Levelized Cost (\$/kW-
Product Option	(MW)	year)	(MW)	year)	(MW)	year)	(MW)	year)
Res HVAC Switch DLC	97.4	-\$24	Not me	odeled	49.5	\$52	Not mo	odeled
Res Smart Thermostat DLC	108.0	-\$56	122.3	-\$71	99.8	-\$40	76.8	-\$75
Res ERWH Switch DLC	0.0	\$24	Not me	odeled	0.0	\$74	Not mo	odeled
Res ERWH DLC Grid-Enabled	32.3	-\$28	3.7	-\$21	21.5	-\$4	3.7	-\$43
Res ERWH DLC Grid-Connected	Not mo	deled	10.5	-\$30	Not m	odeled	10.5	-\$52
Res HPWH Switch DLC	0.0	\$203	Not me	odeled	0.0	\$481	Not mo	odeled
Res HPWH DLC Grid-Enabled	58.3	\$91	20.9	\$50	29.1	\$257	10.5	\$166
Res HPWH DLC Grid-Connected	Not mo	deled	59.5	\$31	Not modeled		29.8	\$128
Res EV Switch DLC	41.6	\$105	82.4	\$22	41.6	\$105	65.3	\$26
Res EV Managed Charging	Not mo	deled	174.9	\$11	Not modeled		137.1	\$14
Res Peak Time Rebate Pricing	Not mo	deled	26.6	-\$14	Not modeled		18.9	-\$10
Res Time of Use Pricing	Not mo	deled	23.1	-\$21	Not m	odeled	32.3	-\$62
Res Behavioral	Not mo	deled	2.9	\$3	Not m	odeled	2.1	-\$18
Res Critical Peak Pricing	33.4	-\$56	Not me	odeled	74.3	-\$66	Not modeled	
Small Comm Smart Thermostat DLC	3.0	-\$36	2.8	-\$54	3.8	-\$3	3.7	-\$54
Small Comm HVAC Switch DLC	2.7	\$0	Not me	odeled	5.3	\$64	Not mo	deled
Medium Comm HVAC Switch DLC	18.4	-\$33	Not me	odeled	77.2	-\$42	Not mo	odeled
Comm EV Fleet Load Management	Not mo	deled	34.4	\$51	Not m	odeled	22.7	\$97
Comm EV Heavy Duty	Not mo	deled	12.9	-\$13	Not m	odeled	8.7	\$1
Comm Critical Peak Pricing	21.3	-\$57	20.0	-\$70	26.4	-\$61	19.2	-\$91
Ind Critical Peak Pricing	1.5	-\$34	1.1	-\$32	1.6	-\$35	2.3	-\$82
Comm Curtailment	16.3	-\$28	15.9	-\$52	20.0	-\$28	14.4	-\$74
Ind Curtailment	4.8	-\$37	4.0	-\$59	4.9	-\$37	4.1	-\$81
Comm Time of Use Pricing	Not mo	deled	10.8	-\$64	Not m	odeled	20.3	-\$97

Rooftop Solar PV Potential

Rooftop Solar PV Potential Methodology

- Used NREL's Distributed Generation Market Demand (dGen) model to simulate customer adoption of rooftop solar PV technology and determine solar PV achievable market potential
- To enable bottom-up analysis, **Google Project Sunroof** data is reviewed to establish solar PV potential at the zip code level
- Calibrating the model to align with PSE historical installations
- Assessing solar potential for the Residential Vulnerable Population
- Cost forecasts based NREL Annual Technology Baseline data

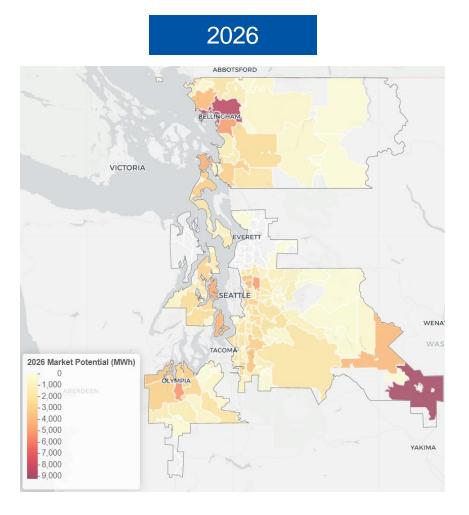

Transforming ENERGY

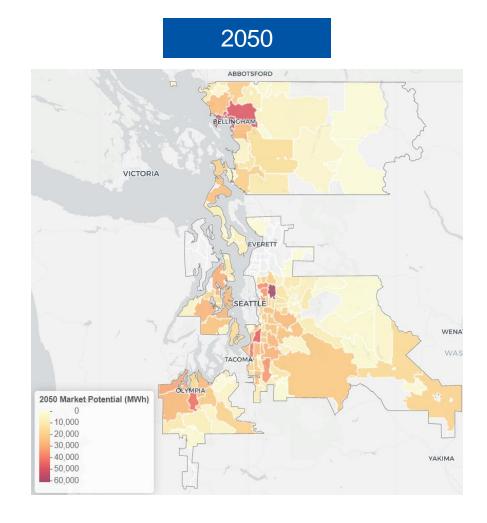

Rooftop Solar PV Achievable Potential

Sector	2050 Cumulative Achievable Nameplate MW	2050 Cumulative Achievable aMW	
Residential	983	112	
Residential Vulnerable Population	25	3	
Commercial	747	93	
Total	1,755	207	

Comparison to 2023 CPA

Key Changes


Most analytical updates unrelated to adoption methodology, which still leveraged dGen modeling and with consistent policy drivers. Updates that drive changes:


- Historical adoption
- Solar system costs and price forecasts

The new set of historical data contributed to a slight decrease in residential potential and an increase in commercial compared to 2023 CPA

2026 and 2050 Rooftop Solar PV Achievable Potential MWh Heat Map by Zip Code

CADMUS

Aquila Velonis Principal | Portland, OR Contact: 503.467.7156 Gamze Gungor Demirci Associate | Phoenix, AZ Contact: 503.467.7132

Thank You

Next steps

Sophie Glass, Triangle Associates

Upcoming activities

Date	Activity
April 23, 2024	Public webinar: Resource alternatives for energy storage
April 24, 2024	Feedback form for April 17 RPAG meeting closes

Email us at irp@pse.com

Г	٦
L	7

Visit our website at pse.com/irp

Leave a voice message at 425-818-2051

Public comment opportunity

Please raise your "hand" if you would like to provide comment."

Thanks for joining us!

Appendix

Acronyms

Acronym	Meaning
BDR	Business demand response
BEV	Battery-electric vehicle
CCA	Climate Commitment Act
CEIP	Clean Energy Implementation Plan
СЕТА	Clean Energy Transformation Act
CFS	Clean fuel standard
СРА	Conservation potential assessment
DLC	Direct load control
DR	Demand response
DSR	Demand-side resources
ELCC	Effective load carrying capacity
EV	Electric vehicle
EVSE	Electric vehicle supply equipment
GRC	General Rate Case

Acronyms

Acronym	Meaning
GWh	Gigawatt hour
IAP2	International Association of Public Participation
ICE	Internal combustion engine
IIJA	Infrastructure Investment and Jobs Act
IRA	Inflation Reduction Act
IRP	Integrated resource plan
KWh	Kilowatt hour
LDV	Light duty vehicle
MHDV	Medium-/heavy-duty vehicle
MSRP	Manufacturer's suggested retail price
MW	Megawatt
NEI	Non energy impacts
NREL	National Renewable Energy Laboratory
OEM	Original equipment manufacturer

Acronyms

Acronym	Meaning
PHEV	Plug-in hybrid electric vehicle
PV	Photovoltaics
RFP	Request for proposal
SCGHG	Social cost of greenhouse gas
T&D	Transmission and distribution
TOU	Time of use
VMT	Vehicle miles traveled
VPP	Virtual power plant
WSEC	Washington State Energy Code
ZEV	Zero emissions vehicle

Appendices

Appendix A – Inputs and Outputs

Load Forecasting Modeling Inputs and Outputs

	Key Inputs			Key Outputs
Input	Description	Source	Output	Description
EV Adoption Forecast	Number of BEVs and PHEVs by census tract by year	Guidehouse	Site Location	Census tract
Charger-to-Vehicle	Current, long-run, and interpolated ratios of chargers needed to support number of EVs, by Tech, EVSE Owner (Public/Private),	Alternative Fuel Data Center (current)	Use Case	Charging use case, examples include Public Market and Private Depot
Ratios ¹	Use Case	NREL's EVI-Pro (long-run)	Technology	L1, L2, DC
Existing Charging Infrastructure	Locations of existing charging stations by tech, owner, and use case	Alternative Fuels Data Center	Year	2023-2050
EVSE Forecast	Number of chargers needed to support EV adoption	Guidehouse	Day of Week / Time of Day	Hourly, Weekend/Weekday
VMT	VMT by segment, along with vehicle efficiency, determines total	FHWA, EDF, EMFAC,	kWh	Monthly energy consumption
	energy needs	AFDC	kW	Hourly load
Vehicle Efficiency	kWh/mile forecast			
PHEV e-Utilization	Proportion of PHEV miles using battery	 Argonne National Lab 		
Stock Vehicle Charging Profile	Typical hourly charging behavior by vehicle type and use case	Guidehouse		

EVSE Modeling Inputs and Outputs

	Key Inputs	Key Outputs		
Input	Description	Source	Output	Description
Vehicle adoption forecast	Vehicle population by powertrain, duty, class, and owner for each census tract	VAST adoption module	Site Location	Census tract
Charger-to-Vehicle Ratios ¹	Current, long-run, and interpolated ratios of chargers needed to support number of EVs, by Tech, EVSE Owner (Public/Private), Use Case	Alternative Fuel Data Center (current) NREL's EVI-Pro (long-run)	Use Case	Charging use case, examples include Public Market and Private Depot
Charger Rated kW	Current and long-run charger kW values by owner, technology, and use case	NREL	Technology	L1, L2, DC
Existing Charging Infrastructure	Locations of existing charging stations by tech, owner, and use case	Alternative Fuels Data Center	Rated kW	Average rated kW by use case, technology, and year
Expected Home Charging Access	The percent of PEV owners that will have access to home charging	NREL VAST adoption module US Census Bureau	Year	2023-2050
Workplace Employee Counts	The volume of employees within each census tract	US Census Bureau	Number of Ports	Number of ports forecasted for each census tract

1. Vehicle-per-charger ratio assumptions are based on the best publicly-available data (even if LD only) along with substantiated refinements calibrated to Guidehouse synthetic vehicle load shapes by use case.

Appendix B – Vehicle Segmentation

Road Usage	Vehicle Duty		Vehicle Segment ¹	VAST [™] Vehicle Class	Example Vehicle
11			Class 1 Vehicles	Passenger Class	Sedan, small sport utility vehicle, small crossover, small pickup truck
	Light Duty		Class 2a Vehicles	Light Truck	Sport utility vehicle, small pickup truck
			Class 2b Vehicles	Light Truck	Pickup truck, small delivery van
			Class 3 Trucks	Delivery Truck	Walk-in van, city delivery van
			Class 4-5 Trucks	Delivery Truck	Box truck, city delivery van, step van
Dn- Road			Class 6 Trucks	Delivery Truck, Semi Truck, Short-Haul	Beverage truck, rack truck
odu			Class 7-8 Trucks	Delivery Truck, Semi Truck Long-Haul, Short-Haul	Short-haul tractor-trailer truck, long-haul tractor-trailer truck, dump truck
			School Buses	School Bus	School bus
	Medium and Heavy		Transit Buses	Transit Bus	Transit bus
	Duty		On-Road Specialty Vehicles	Delivery Truck	• Fire truck, ambulance, recreational vehicle, refuse truck, drayage truck
			Transport Refrigeration Units	N/A	Refrigeration unit (excluding tractor trailer) for warehouses, distribution centers, grocery stores
		0	Airport Ground Support Equipment	N/A	Aircraft refueler, aircraft pushback tractor
)ff- load		00 00	Seaport Cargo Handling Equipment	N/A	Hostler truck, rubber-tired gantry crane, container handler
			Other Forklifts	N/A	Counterbalance / telescopic handler forklift for warehouses, lumberyards, and construction sites

Vehicle Segmentation with VAST Vehicle Segments

1. Vehicle Segments are defined based on recognized Guidehouse Outwit Complexity ederal Highway Administration, US Energy Information Administration.

Outside of current scope

Appendix C – Policy Details

Policy Included in Base Case

Policy	Timeline	Technology Impacted	Implementation in VAST
Washington Advanced Clean Cars (ACC)	2023 - 2050	Ĭ 🚗	PEV availability adjusted to match targets
Clean Vehicle Credit (IRA)	2023 – 2032	Ĭæ,	TCO for PEVs reduced by incentive
Alternative Fuels Fueling Credit (IRA)	2023 – 2032	<u>7</u> 7	EVSE Rollout & Non-residential Charging Eligibility
NEVI Program	2022 – 2026	<u>2</u> †	Captured in EVSE Rollout of Market Chargers
Charging & Infrastructure Program (Community Charging)	2022 – 2026	<u> </u>	Captured in EVSE Rollout of Market and SSUD Chargers
Charging & Infrastructure Program (Corridor Charging)	2022 – 2026	<u> </u>	Captured in EVSE Rollout of Market Chargers
No and Low Emissions (Bus) Grant Program	2022 – 2026		TCO for PEV transit buses reduced by incentive
EPA Clean School Bus Program	2022 – 2026		TCO for PEV school buses reduced by incentive
Washington Advanced Clean Trucks (ACT)	2023 – 2050		PEV availability adjusted to match targets
Washington Clean Fuel Standard	2023 – 2038	t er 1 7	Credits applied towards EVSE rollout & EV incentives
Washington State EV Sales Tax Exemption	2023 – 2025	Ĭ ~~~	TCO for LD PEVs reduced by tax credit
Washington State Zero Emissions School Bus Grant Program	2023 – 2025		TCO for PEV School Buses reduced by incentive
Diesel Emissions Reduction Act National Competitive Grants	2023 – 2025		TCO for PEV Refuse Trucks reduced by incentive
Charger Where You Are	2024 – 2025	<u>2</u> ť	Captured in EVSE Rollout of MUD, Market, Workplace and Fleet Chargers
EV Charging Program (Department of Commerce)	2024 – 2025	<u></u> 7	Captured in EVSE Rollout of MUD, Market, Workplace and Fleet Chargers

ACC and ACT Targets

Vehicle Segments can consist of different classes of vehicles, leading to differing policy targets

Vehicle Segment	Class	2035 ACC Target	2035 ACT Target
Passenger Car	1	100% of New Sales	NA
Light Truck	2	100% of New Sales	NA
Delivery Truck	2b-3	NA	55% of New Sales
Delivery Truck	4-8	NA	75% of New Sales
Semi Truck	6-8	NA	75% of New Sales
Semi Truck	7-8 Tractor	NA	40% of New Sales (2032 forward)
Short Haul Truck	6	NA	75% of New Sales
Short Haul Truck	7-8 Tractor	NA	40% of New Sales (2032 forward)
Long Haul Truck	7-8 Tractor	NA	40% of New Sales (2032 forward)

Appendix D – Assumptions Detail

Home Charging Access

NREL's 2021 study on EV charging at homes suggests home charging access may be more limited than previously believed

The F24 study base scenario assumes 58% of PEVs will have access to Home Charging in the long-run

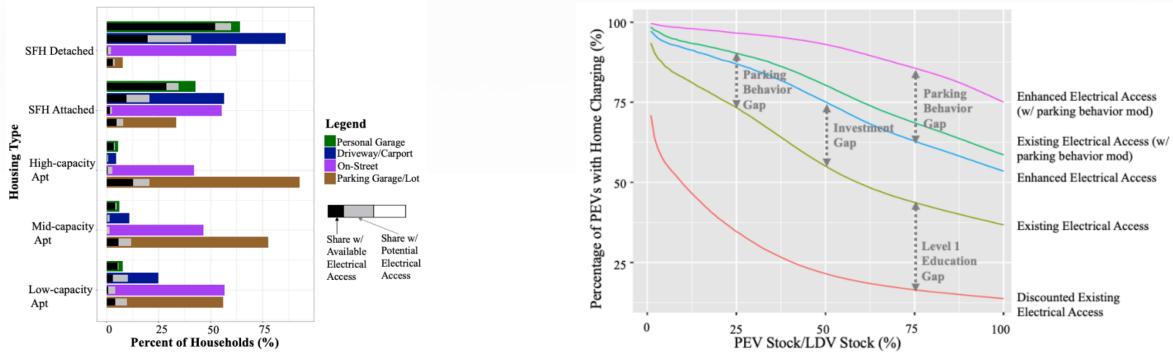
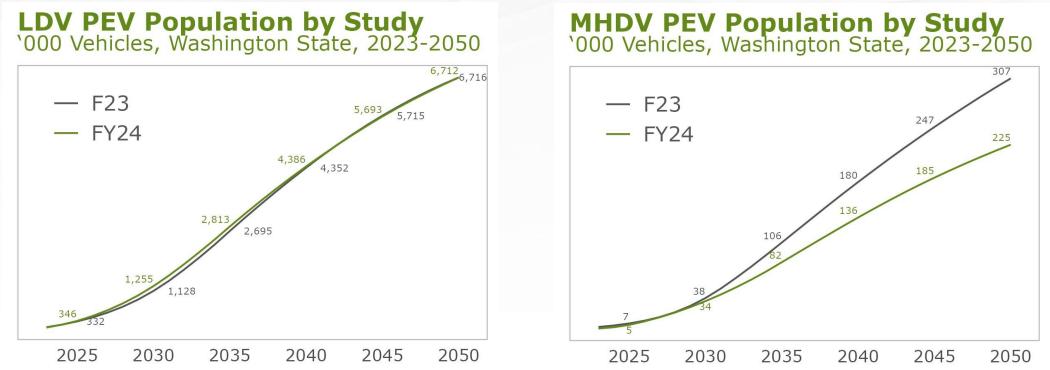


Figure 7. Existing and potential electrical access by residence type and parking option

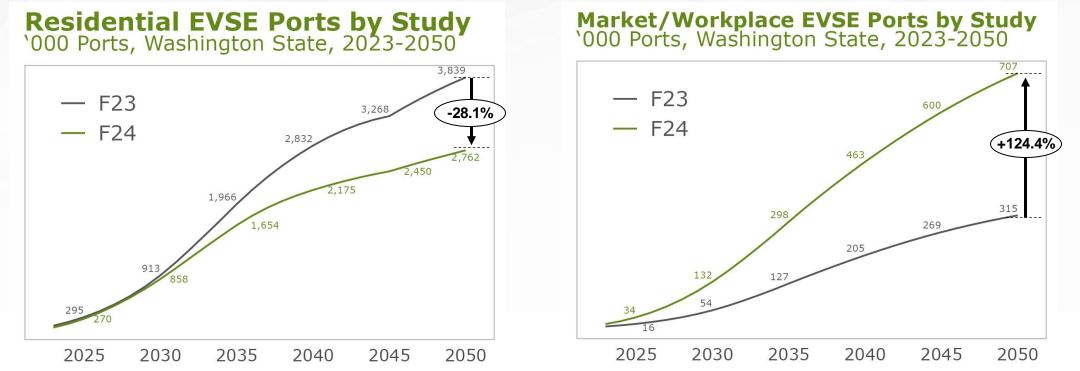
Figure 11. Residential charging accessibility projection with the change of PEV stock share

Figure 7 and 11: Ge, Yanbo, Christina Simeone, Andrew Duvall, and Eric Wood. 2021. There's No Place Like Home: Residential Parking, Electrical Access, and Implications for the Future of Electric Vehicle Charging Infrastructure. Golden, CO: National Renew able Energy Laboratory. NREL/TP-5400-81065. https://www.nrel.gov/docs/fy22osti/81065.pdf.


F23 vs F24 EV Forecast – VMT Update

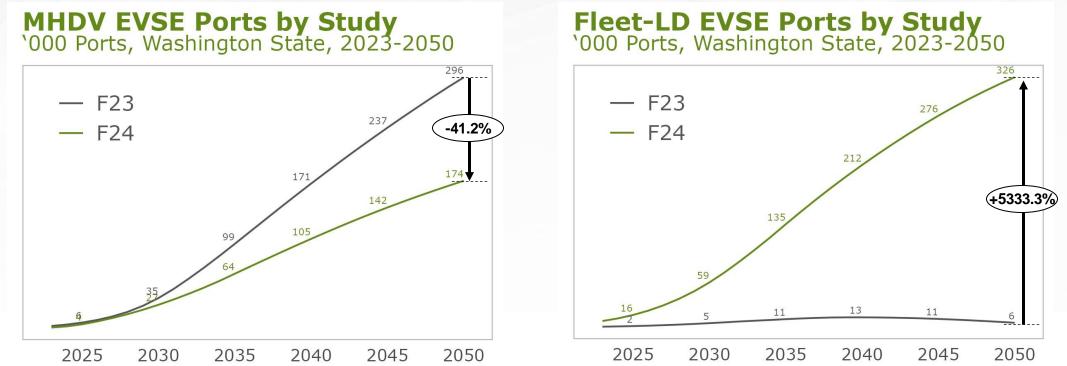
VMT Update				
Duty	Class	2023 VMT	2024 VMT	% Change
HDV	D. Truck	78,000	25,000	-67.95%
HDV	Long Haul	-	100,060	
HDV	S. BUS	12,000	12,000	0.00%
HDV	S. Truck	78,000	30,000	-61.54%
HDV	Short Haul	-	40,000	
HDV	T. BUS	78,000	44,000	-43.59%
LDV	LT	9,946	10,038	0.93%
LDV	PC	13,026	9,734	-25.27%
MDV	D. Truck	48,000	12,000	-75.00%
MDV	S. BUS	12,000	12,000	0.00%
MDV	S. Truck	48,000	20,000	-58.33%
MDV	Short Haul	-	30,000	
MDV	T. BUS	48,000	44,000	-8.33%

Appendix E – F23 vs F24



F23 vs F24 EV Forecast – Washington State

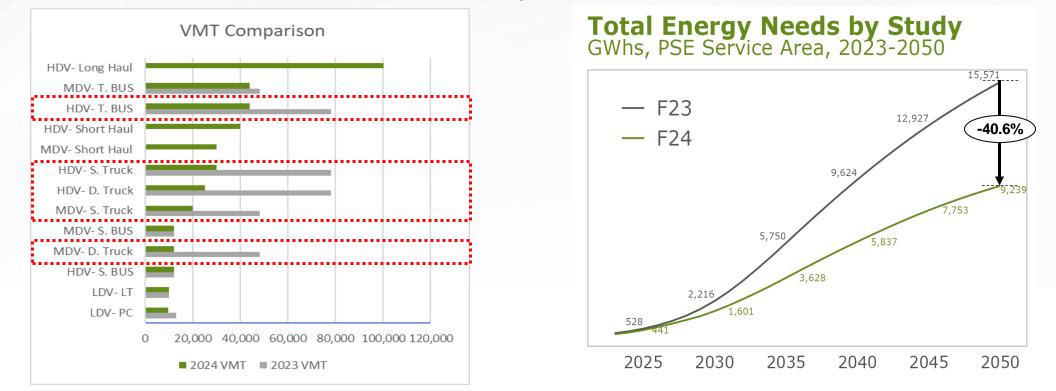
- F24 forecasts reflect general updates to modeling inputs, including vehicle MSRP, fuel prices, policies, vehicle registrations, and state sales
- For LDVs, the adoption trajectory increased to reflect actual YoY growth from 2021 to 2023 leading to more aggressive adoption between 2024 and 2029 than F23, but F23 and F24 reach similar levels of sales from 2030 forward
- For MHDVs, market share for non-buses has increased in F24 to reflect the ACT, however overall state sales for MHDVs has been realigned with historic YoY actual sales data leading to absolute MHDV sales decreasing between F23 and F24


F23 vs F24 EV Forecast – Home Charging Access

- VAST modeling assumptions on access to home charging has been updated from assuming 100% accessibility in the long-run to a value based on census data and NREL research
- The F24 EV Forecast assumes 57.6% of individually-owned LD PEVs in Washington State will have access to home charging, leading to 28.1% less residential ports in 2050 compared to F23
- The gap in charging need due to fewer residential chargers is made up via market and workplace charging, leading to **124.4% more market and workplace ports in 2050** in the F24 forecast compared to the F23 forecast

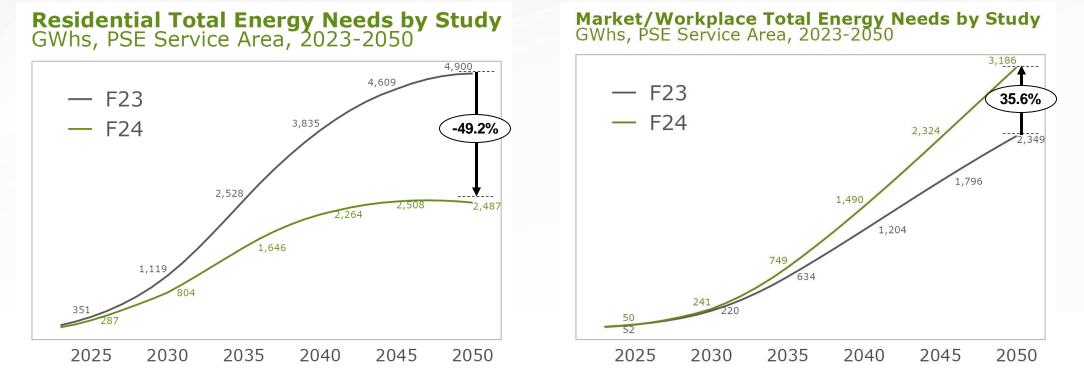
Guidehouse A Outwit Complexity

F23 vs F24 EV Forecast – MHD & Fleet-LD Charging

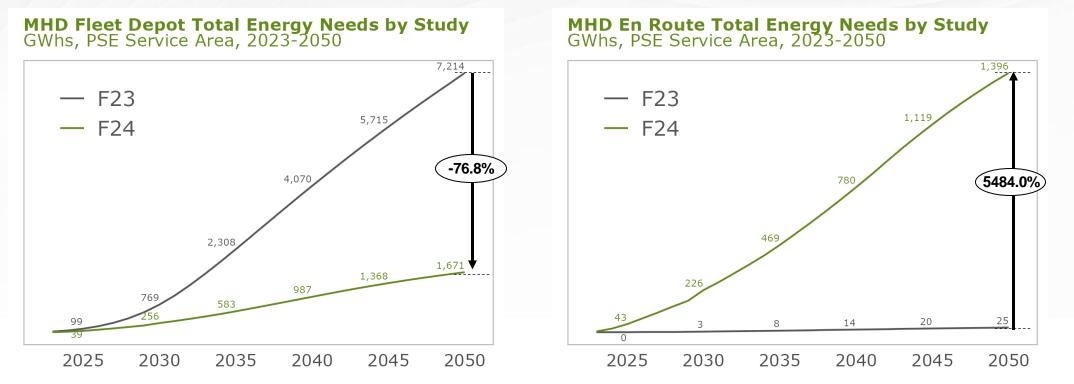


- Variation in the MHDV charging use case port counts between the F24 and F23 forecasts are driven primarily by differences in forecasted MHD PEV population
- Based on LD fleet vehicle cycle and annual VMT, and supported through interviews with fleet owners, the F24 EV forecast assumes the Fleet-LD charging use case will be primarily comprised of L2 chargers as opposed to DC
- The assumed preference to L2s combined with a higher port-to-vehicle ratio than DC chargers leads to over 5000% increase in Fleet-LD ports in 2050 in the F24 study compared to the F23 study

Guidehouse A Outwit Complexity


F23 vs F24 EV Forecast – Total Energy Needs

Updates to VMT lead to ~40.6% decline in total energy need from F23 to F24 in 2050


- VMT updates were informed by the FHWA, California's Emissions Factor model (EMFAC), the Environmental Defense Fund (EDF), and AFDC
- Significant reductions in S. Truck and D. Truck VMT reflect both VMT updates <u>and</u> the introduction of the Long Haul and Short Haul classes, implemented in VAST to address variations of the S. Truck duty driving needs and duty cycle

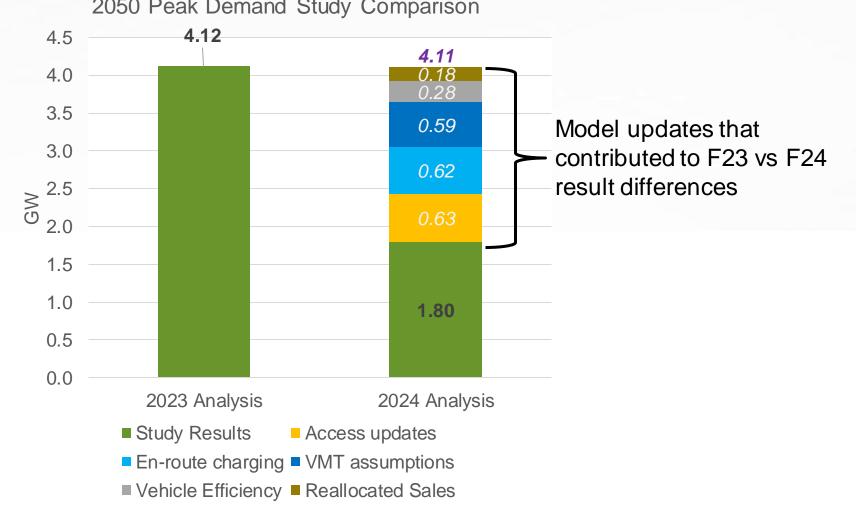
F23 vs F24 EV Forecast – Home Charging Access

- The decrease in Residential charging needs and increase in Market/Workplace charging needs reflects the VAST modeling assumptions on access to home charging, which assumes that Market and Workplace charging will support the majority of individually-owned LD PEV charging in the long-run
- The F24 EV Forecast projects ~45.0% of charging energy from individually-owned LD PEVs occur at residences (SUD, MUD, or SUD-Shared), and ~35.9% of charging energy from individually-owned LD PEVs will occur at SUDs

F23 vs F24 EV Forecast – MHDV Depot vs En Route Charging

- For the F24 EV Forecast, VAST has introduced the Long-Haul Truck class, which represents the largest source of charging need of all the MHDVs
- Long-Haul trucks are expected to primarily use en route charging, specifically the Corridor use case, which leads to an increase of over 5000% in en route total energy compared to the F23 EV Forecast

Energy difference breakdown


Vehicle efficiency was biggest contributor to energy differences

2050 Energy Usage Study Comparison 18 15.6 16 15.0 1.5 14 Model updates that 1.9 12 contributed to F23 vs F24 result differences 2.4 10 TWh 8 6 9.2 4 2 0 2023 Analysis 2024 Analysis Study Results VMT assumptions ■ Reallocated Sales ■ Vehicle Efficiency

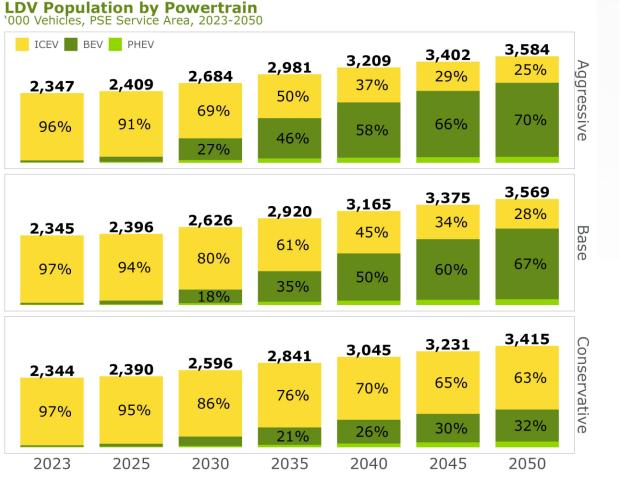
From a peak demand perspective, this reduction in overall energy pushed down the load shape

Peak Demand

Corridor charging, electricity access, and VMT assumptions were biggest drivers in peak load difference 2050 Peak Demand Study Comparison

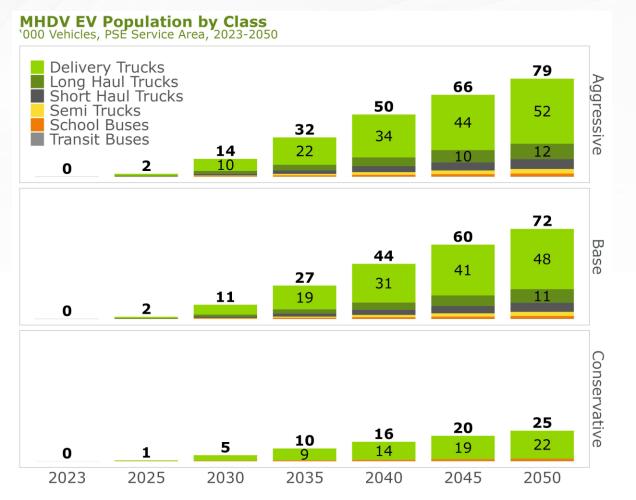
Sales and VMT updates

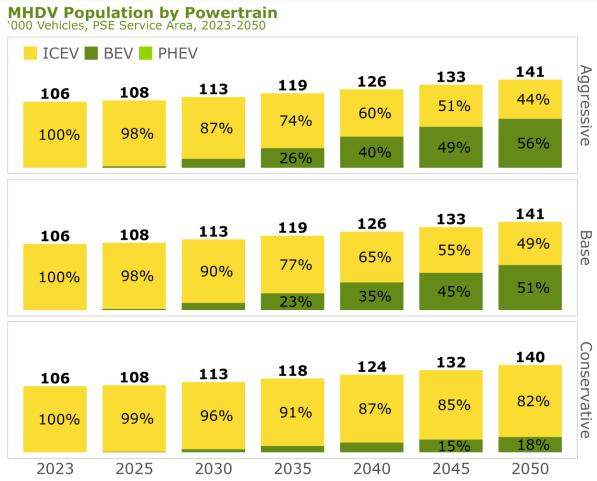
F24 Model Update	Impact	Sources	Uncertainty	Urgency
Reallocated US vehicle salesto individual states based onupdated IHS registration data.Registrations during Covid threwoff sales estimates.	25% reduction in 2050 WA MHDV population (with minimal impact on 2050 WALDV population).	S&P Global (registration data provider) MarkLines (vehicle sales data provider)	Medium level of certainty regarding WA sales in near years, which decreases over time	Not urgent
Updated VMT assumptions from disaggregating semi-truck vehicle class to include short- haul, long-haul, and "others". Updated VMT for other vehicle classes as well	The previous analysis assumed all HDV Semi- Trucks had VMT of 78K. In this analysis, we assigned more appropriate values by use case: Short-Haul = 40k Long-Haul = 100k Semi-Truck ("others") = 30k	FHWA Statistics Series GHI Fuel Institute report EMFAC EDF AFDC	Medium level of certainty regarding VMT in near years, which decreases over time	Not urgent
	Reduced VMT assumptions resulted in lower energy usage.			

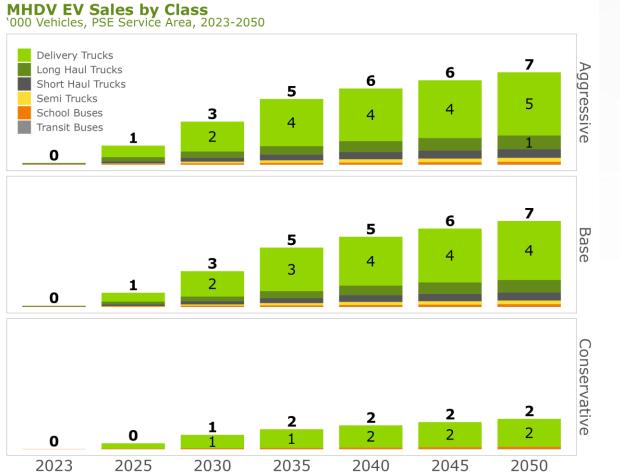

Efficiency, access, and corridor charging updates

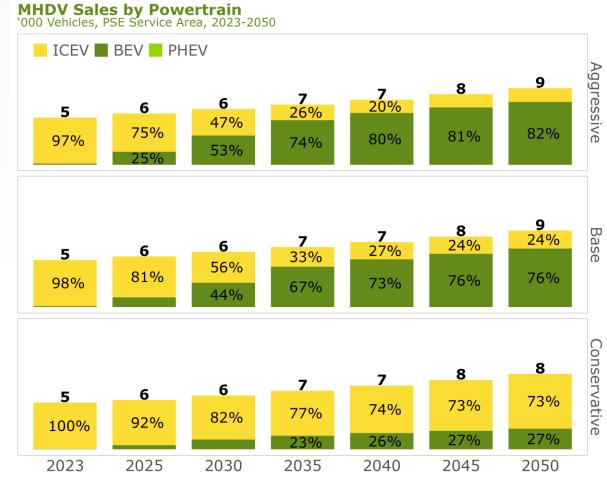

F24 Model Update	Impact	Sources	Uncertainty	Urgency
Vehicle efficiency updates.	Increased vehicle efficiency led to lower energy use.	2023 Fuel Economy Guide ICCT Purchase Cost of Zero-Emissions Truck Working Paper AFDC Advanced Vehicle Search for S. Bus AFDC Advanced Vehicle Search for T. Bus	Medium level of certainty regarding vehicle efficiency in near years, which decreases over time	Not urgent
The F24 EV Forecast uses updated assumptions about housing stock and electricity access	Long run home charging access decreased from 70% to 57%. This reduced evening peak demand as charging shifted from early evening at residences to the middle of the day at workplaces or public (market) stations.	https://www.nrel.gov/docs/fy22osti/81065.pdf Census info source	Low level of certainty	This becomes an urgent issue in 2040-2050 time-range
Added en-route charging use case for long-haul trucks	Updated assumptions to indicate long-haul trucks will meet 71% of their charging needs from en- route charging, which occurs during the day as opposed to in-depot, which happens in the evening. Previously the model assumed all semi-truck charging occurred at depots.	National Household Travel Survey Bureau of Transportation Statics, Freight Analysis Framework Version 5	Low level of certainty	This becomes an urgent issue in 2040-2050 time-range

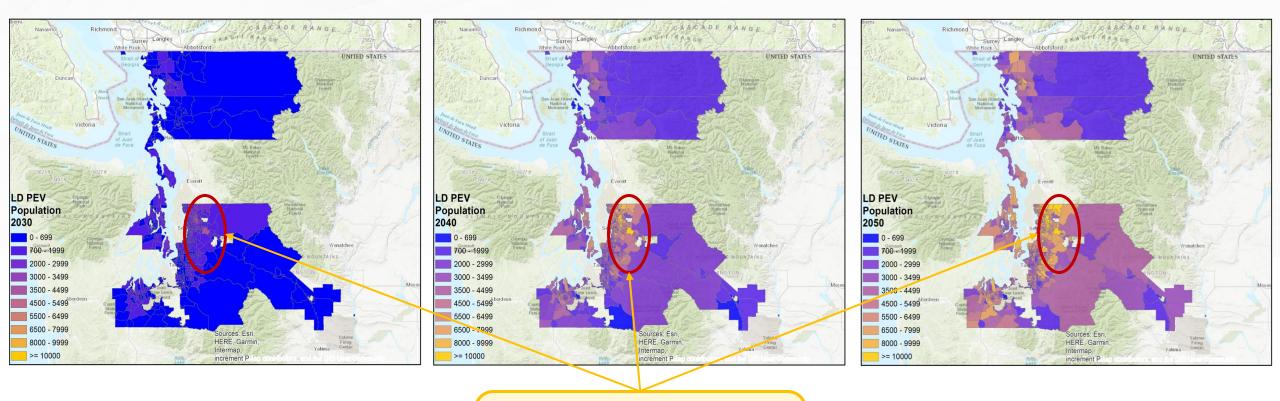
Appendix F – PSE Service Area EV Adoption Scenario Results



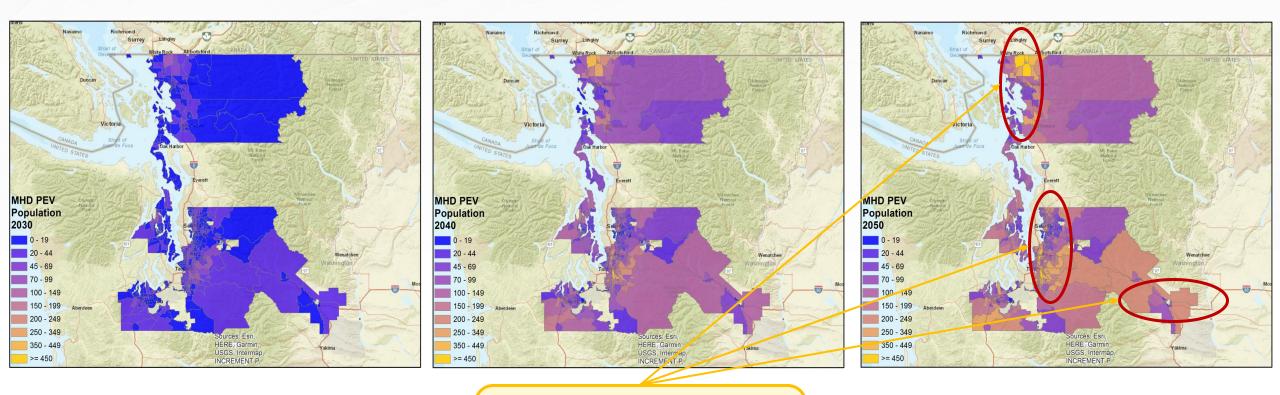

In PSE's Service Area in 2050, LD PEV Population is forecasted to range from 1,273k vehicles to 2,694k, with sales ranging from 88k PEVs to 184k




In PSE's Service Area in 2050, MHD PEV Population is forecasted to range from 25k vehicles to 79k, with penetration ranging from 18% up to 56%

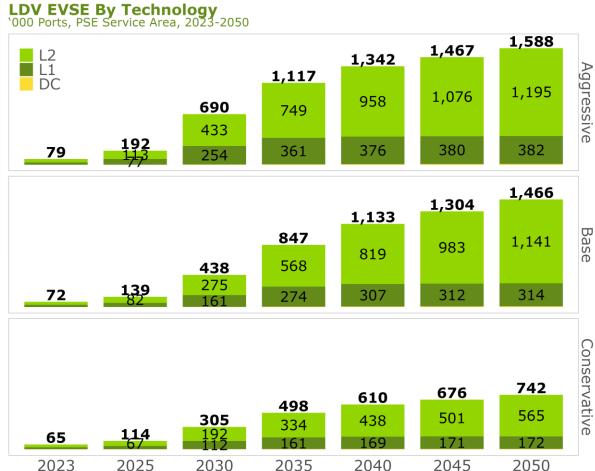


In PSE's Service Area in 2050, MHD PEV Sales is forecasted to range from 2k vehicles to 7k, with market share ranging from 27% up to 82%

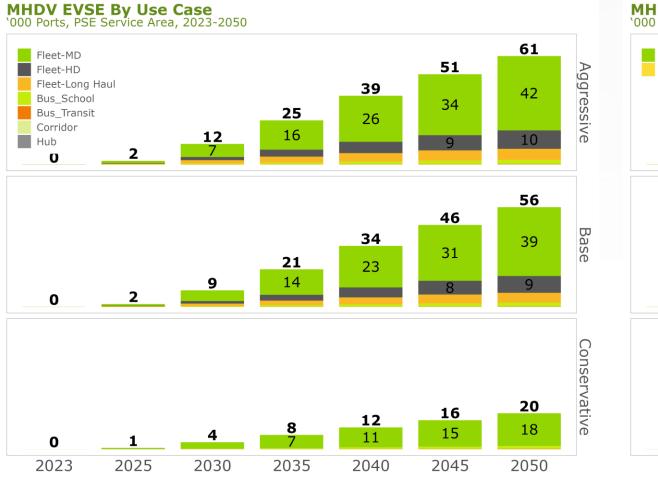

LD PEV registrations concentrated around major areas such as suburban Seattle, Tacoma, and Kent

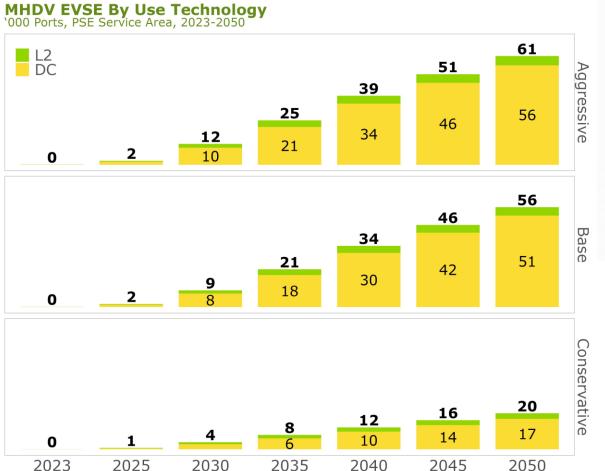
LDV adoption aligns with suburban Seattle, Tacoma and Kent

MHD PEV registrations concentrated around Interstate 5 – a major shipping artery

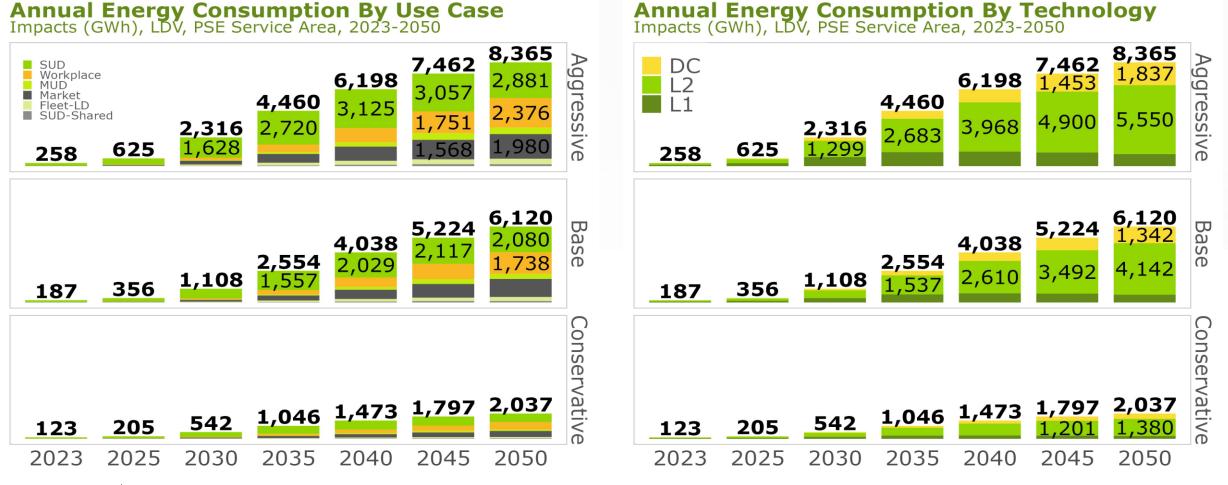

MHDV adoption focused around major shipping arteries such as I5 and I90

Appendix G – PSE Service Area EVSE Needs Scenario Results

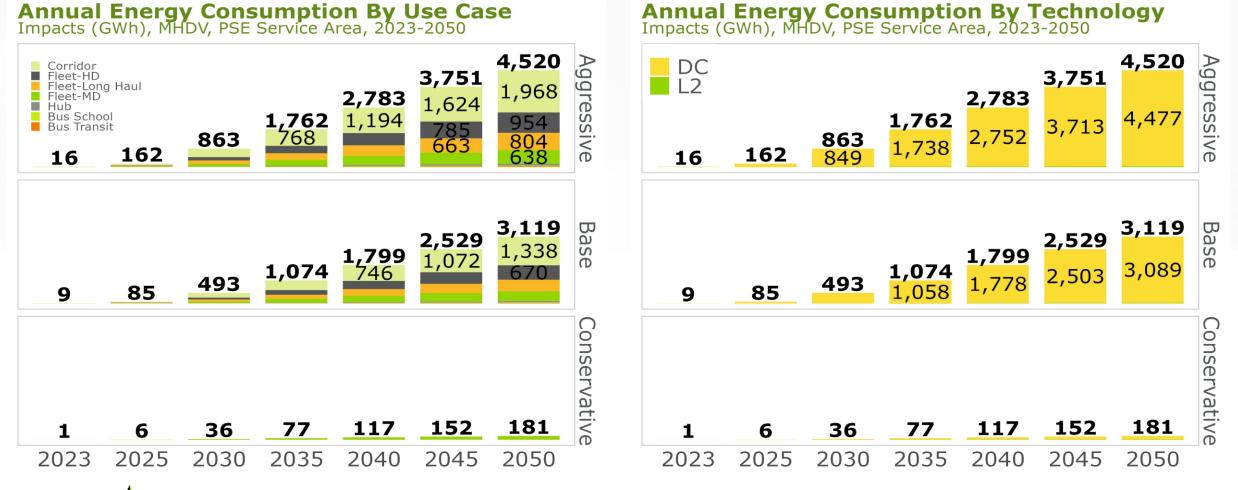



In PSE's Service Area in 2050, EVSE for LDVs is forecasted to range from 742k ports to 1,588k

In PSE's Service Area in 2050, EVSE for MHDVs is forecasted to range from 20k ports to 61k

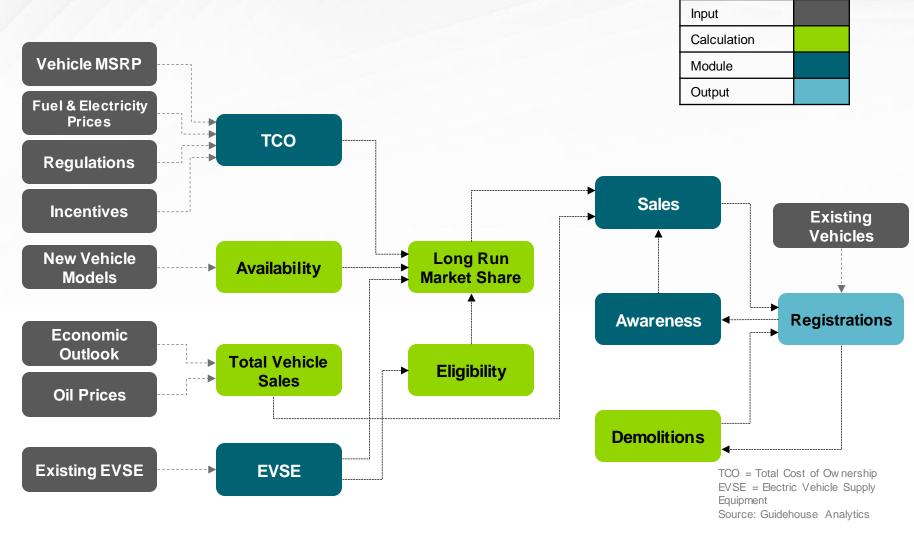


Appendix H – PSE Service Area Load Impacts Scenario Results



In PSE's Service Area in 2050, Energy Required for LDVs is forecasted to range from 2,037 GWhs to 8,365 GWhs

In PSE's Service Area in 2050, Energy Required for MHDVs is forecasted to range from 181 GWhs to 4,520 GWhs


The assumption that no HDV adoption in the Conservative scenario significantly impacts the MHDV energy requirement

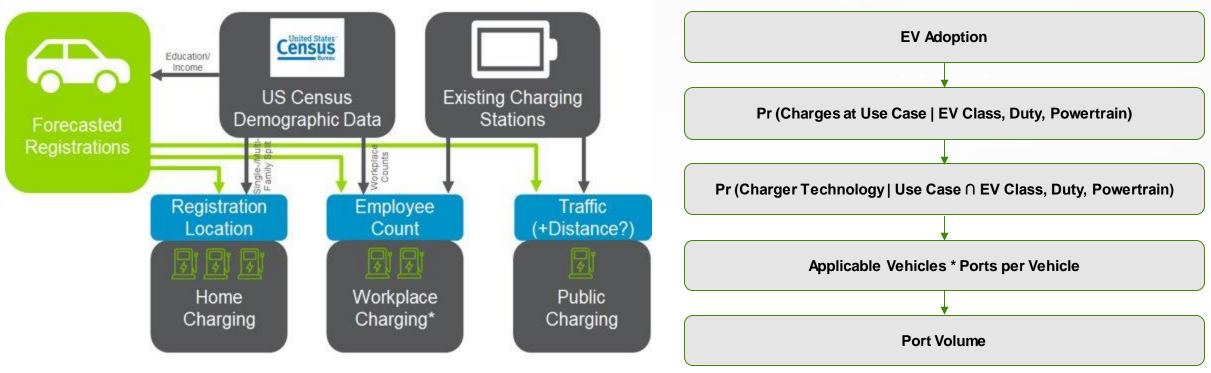
Appendix I – Overview of Methodology

VAST EV Adoption Overview

Methodology

- Using a systems dynamics model of stocks (vehicle registrations) and flows (vehicle sales, scrappage) that uses Enhanced Bass Diffusion, VAST is able to forecast EV
- Forecasts EV adoption by explicitly accounting for key dynamics of technology adoption such as incentives, regulations, availability, awareness and total cost of ownership
- Taking inputs at the census tract level, including:
 - Vehicle registrations by make and model
 - o Vehicle MSRP
 - Expected gasoline and electricity prices
 - o Vehicle lifetime
 - o Incentives
 - Annually collected survey data on vehicle owners
 - Demographic data, e.g., population, income, units in housing structure, vehicle ownership, household counts, educational attainment

Guidehouse 人 Outwit Complexity


EV adoption modeling inputs and outputs

Key Inputs

Input	Description	Source
Registration Data	Vehicle registration by fuel type and zip	IHS Markit
Fuel Costs	Electricity rates (\$/kwh) and gasoline and diesel prices (\$/gal)	U.S. EIA (electricity) AAA (gasoline and diesel)
Vehicle Availability	Guidehouse research on future availability of EVs, including MHD vehicles in California	Guidehouse Insights
VMT	Forecasted annual vehicle miles traveled, California	Federal Highway Administration
Vehicle Efficiency	kWh/mile forecast	Argonne National Lab
PHEV e-Utilization	Proportion of PHEV miles using battery	
BEV Range	Total miles increase forecast	Guidehouse Insights
Education and Income	Educational attainment and income levels, by census tract	US Census Bureau
Vehicle MSRP	Cost of vehicle in \$'s	Guidehouse Insights, Kelly Blue Book

Charging Methodology

Guidehouse's EV Charging module determines the volume and location of EVSE required to support adopted EVs, specific to use-cases and technology charging levels

*Pr = Probability

Vehicle Classes Served by Charger Site Types

Site Ownership	Use Case	Vehicle Classes Served	
	Residential • Single-Family (SUD) • Multi-Family (MUD)	Passenger CarsLight Trucks	
	Workplace	Passenger CarsLight Trucks	
Private	Fleet Depot • Fleet-LD • Fleet-MD • Fleet-HD • Fleet-Long Haul	 Passenger Cars Light Trucks Delivery Trucks Semi Trucks Short Haul Trucks Long Haul Trucks 	
	Bus Depot School Bus Transit Bus 	School BusesTransit Buses	
	Curbside Residential Single-Family Shared (SUD-Shared) 	Passenger CarsLight Trucks	
	Market	Passenger CarsLight Trucks	
Public	Corridor	Long Haul Trucks	
	Hub	Delivery TrucksSemi TrucksShort Haul Trucks	

 Charger use cases are specific to the needs of different vehicle classes, as listed in the table to the left.

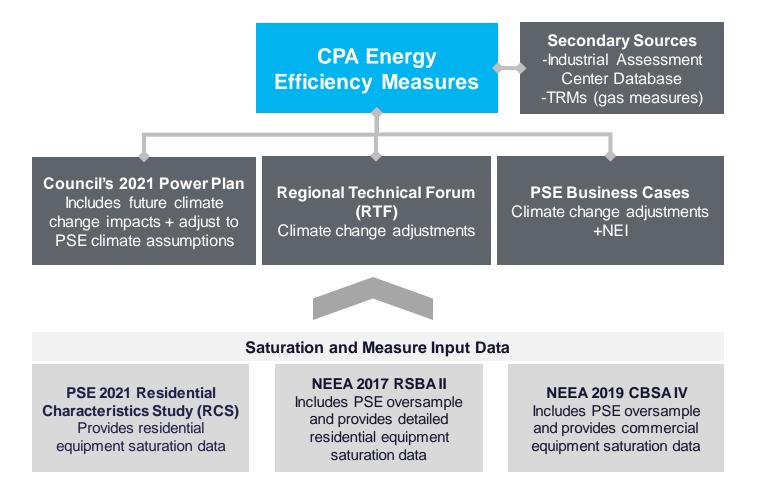
- Light-duty vehicles (LDV) typically share all public charging infrastructure and some private charging infrastructure, including MUD, SUD-Shared, and Fleet-LD use cases.
- Medium- and heavy-duty vehicles (MHDV) rely on separate charging infrastructure from LDVs.

VAST Load Impacts Calculation by Use Case

The VAST Load Impacts module calculates the kWh and kW impact of EV charging at EVSE locations. Key variables include the driving need of the vehicles (VMT), vehicle class and duty, vehicle power train and efficiency, and the capacity of the charger.

Vehicle Example A	Class (a) Long-Haul	Duty (b) Heavy	Powertrain (c) BEV	Annual VMT [#] (d) 100,000 miles	Fuel Efficiency [#] (e) 2 kWh/mile	Use Case [#] (f) Corridor (71%)	Energy* (kWh = d*e*f) 142,000 kWh
Vehicle Example B	Class (a) Passenger Car	Duty (b) Light	Powertrain (c) BEV	Annual VMT [#] (d) 10,000 miles	Fuel Efficiency [#] (e) 0.3 kWh/mile	Use Case [#] (f) Residential (80%)	Energy* (kWh = d*e*f) 2,400 kWh

Vehicle Composite Charging Prof	ile	Mahiala	Vehicle Composite Charging Profile	
Vehicle ExampleAPrivate – Home – Urban/Suburban/Rural Private – Workplace – Urban/Suburban/Rural Private – Depot – Urban/Suburban/Rural Public – Corridor – Urban/Suburban/Rural Public – Market – Urban/Suburban/Rural	0% 0% 29% 71% 0%	Vehicle Example B	Private – Home – Urban/Suburban/Rural Private – Workplace – Urban/Suburban/Rural Private – Home – Urban/Suburban/Rural Public – Corridor – Urban/Suburban/Rural Public – Market – Urban/Suburban/Rural	80% 10% 0% 0% 10%


Model Inputs & Key Assumptions

Model Input	Value
Reporting Level (Generator or Meter)	Generator
Study Period	2026-2050
Cost Year	2026
Line loss	Electric: 8.14% , Natural Gas: 1.12%
Avoided T&D (\$/kW-Year)	Electric: \$98.42 (avg. of summer and winter), Natural Gas: \$0.00
Conservation Credit	10%
Admin Adder	21%
Discount Rate	6.62%
Vulnerable Population Levelized Cost Adjustment	0.667
Peak Definition	January, February, November, December Weekdays (HE8-HE10, HE18-HE20)
Includes non-energy impacts (NEIs)	Yes

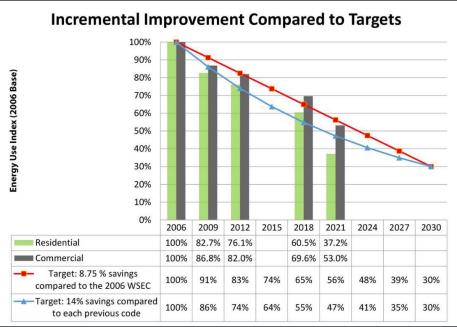
Energy Efficiency- Measures

General CPA Input Assumptions

Codes and Standards Forecast

Federal Appliance Standards

- Accounting for all on-the-books federal standards
- Including the new residential gas furnace standard (finalized on September 29th, 2023)


Washington State Energy Codes (2021 WAC)

- No gas or electric resistance for space and water heating
 - New construction only
 - Single-family, multifamily, and commercial
 - Impacts: Increase in electric EE potential and reduction in natural gas EE potential
- New requirements for commercial cooking

City of Seattle Building Emissions Performance Standard (BEPS) policy

- Existing commercial and multifamily buildings larger than 20,000 square feet
- Reducing building emissions 27% by 2050 by improving energy efficiency

Modeling RCW 19.27A future code that require 70% reduction in **net annual energy** consumption by 2031, compared to the 2006 WSEC.

Source: Draft Washington Progress of the Residential and Commercial Energy Codes Towards RCW 19.27A (PNNL), 2023

2025 CPA Approach

- Planned approach assume future code cycles (2027 and 2030) will reduce commercial sector consumption by 10% each for all gas and electric end-uses
- No planned adjustment for residential sector

Climate Change Adjustments

2023 CPA Approach

Accounted for climate change on weather-sensitive measures based on the Council's 2021 Power Plan data and collaboration with PSE's load forecasting team

Adjustment factors applied to weather-sensitive RTF and PSE Business Case measures

Residential air conditioning saturations increased to align with PSE load forecast projections

2025 CPA Approach

Similar to 2023 CPA approach, with **updated PSE climate** change data

- ~ 21% decrease in heating load by 2050
- ~ 197% increase in cooling load by 2050

Council Modeled Ratios	HVAC Ratio FMY/TMY
All Residential Heating - HZ1	80%
All Residential Cooling - HZ1	200%
All Residential Combined - HZ1	105%

Expected impact on potential similar to prior CPA (compared to base year)

- Higher cooling savings (from ACs and retrofits with cooling savings)
- Lower heating savings from gas furnaces and boilers

Non-Energy Impacts and Underserved Communities & Equity

134

ln 2

 \bullet

202

.

NERGY

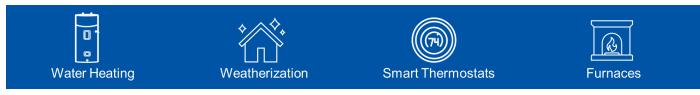
Non-Energy Impacts

Some RTF/Council measures have NEI already water savings, O&M, lifetime replacement) PSE has conducted NEI evaluation (e.g., DNV study) to expand NEIs PSE incorporating these NEIs into some Business Cases	 The <i>Vulnerable Population</i> data best aligned with CPA geographic areas (e.g., county level built up from block groups) and therefore, selected as the primary identifier Segmented PSE residential accounts for vulnerable populations by county (SF, MH, and MF) Used PSE 2021 RCS data to inform equipment saturations and fuel shares for vulnerable population (based on income)
5 CPA Assumptions Following the same NEI approach as the prior CPA Using updated PSE Business Cases with the latest NEI data	 2025 CPA Assumptions "Vulnerable populations" is still the preferred primary identifier. Using the same VPs data set as 2023 CPA. Using PSE 2021 RCS low-income data to inform equipment saturations and fuel shares for VPs.

Underserved Communities & Equity

CP/	۹.
a to	inform
for	VPs.
	CADMUS

Adoption Ramp Rates

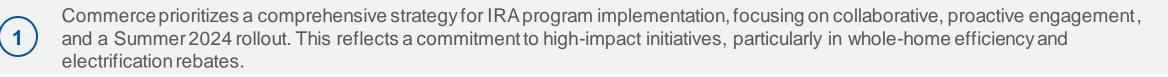


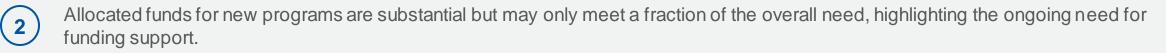
2023 CPA Approach

- Applied 10-year flat ramp for discretionary measures (electric and natural gas based on PSE historic precedent)
- Created disconnect between natural gas programs and potential study near-term savings

Updated ramp rate process for 2025 CPA

- Updated **natural gas** discretionary measure 10-year ramp rates to align Council discretionary ramp rates.
- Conducted in-depth interviews with the PSE personnel for four measure categories which showed the most divergence between planned potential in last CPA and actual (evaluated) savings and gathered recommendations on updating the ramp rates of selected gas and electric measures.


• Solicited feedback from PSE program staff on the draft results and made further gas and electric measure ramp rate updates to better align with PSE programs.



IRA Funding Opportunities Research

Interviewed two Washington State Department of Commerce staff, the lead IRA state funding agency on direction of IRA funding and opportunities to leverage existing PSE programs

CONCLUSIONS

Navigating the initial design phase can be challenging for planning alignment. Varied motivations between utility and state programs, targeting different populations, and eligibility criteria, may pose challenges.

Interviewees acknowledge the challenges in integrating IRA programs with existing incentives, particularly to low-income households, due to the limited coverage of project costs with existing incentives, non-seamless processes, and delays in rebate processing.

5 There is a chance for collaboration with the state and utilities to standardize programs, use diverse funding sources, and align contractor networks.

Utilities have a valuable messaging platform that can be leveraged to effectively distribute information about IRA-related opportunities.

IRA Modeling Considerations

2025 CPA Assumptions:

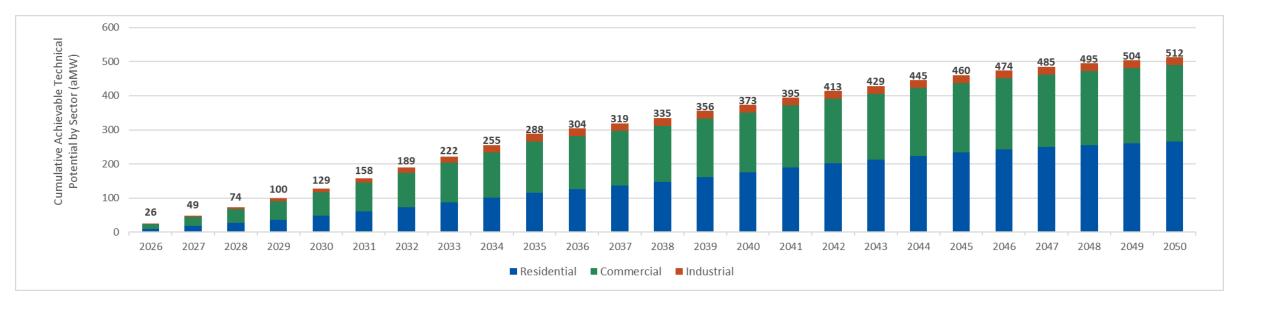
- PSE IRA HOMES/HEAHRA funding based on PSE allocations and for 25C based on the proportion of housing units in PSE service area compared to US
- 25C only applies to homeowners (primary residence)
- HOMES/HEEHRA + 25C tax credits to be combine
- Hard to model EE measures with HOMES rebate (apply to weatherization mainly)
- Assuming similar measures as HEEHRA, and increase HEEHRA funding by HOMES budget
- HEEHRA program contributes 70% funds for electrification measures and 10% EE funds (remaining 20% for non-EE funds)
- HOMES program indirectly funds 20% for electrification and 60% EE funds (remaining 20% for non-EE funds)
- 25C program contributes 45% to EE, 45% to electrification, and 10% to other (biomass, audits, etc.)

HEEHRA and 25C

Rebate and Tax Credit Summary for Specific Measures

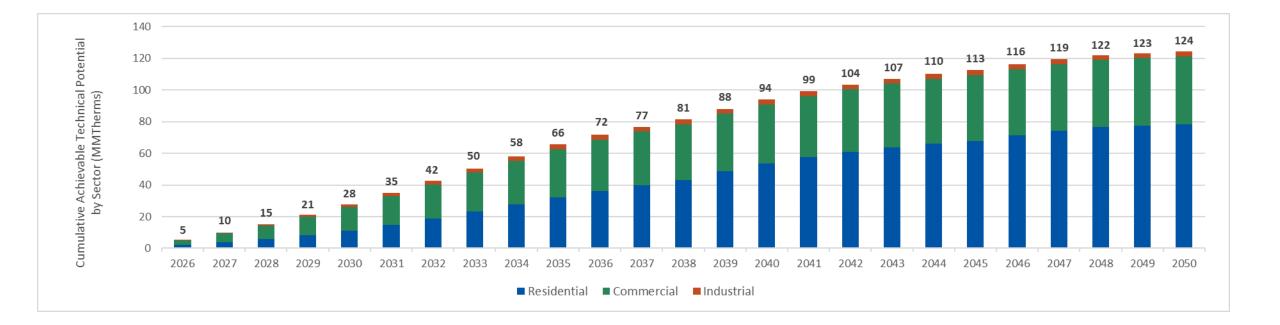
Megoure	High-Efficien	cy Electric Home Rebate	25C T	ax Credit
Measure	Requirements	Rebate Amount	Requirement	Credit Caps
Overall incentive amount and limit	Household <150% AMI	80-150% AMI: 50% of installation cost <80% AMI: 100% of costs for households Total cap of \$14,000	Sufficient tax liability to claim credit	30% of installation cost up to \$2,000 per year for heat pumps and biomass; 30% of installation cost up to \$1,200 per year for all other measures combined
Appliances				
Heat pumps	ENERGY STAR electric	\$8,000	Highest CEE non-advanced Tier	\$2,000
Heat pump water heaters	ENERGY STAR electric	\$1,750	Highest CEE non-advanced Tier	\$2,000
Central air conditioner, water heater, furnace, or boiler	N/A	N/A	Highest CEE non-advanced Tier	\$600
Stove, cooktop, range, or oven	N/A	\$840	N/A	N/A
Heat pump clothes dryer	ENERGY STAR electric	\$840	N/A	N/A
Biomass (wood) stove or boiler	N/A	N/A	>75% thermal efficiency (by HHV)	\$2,000
Components				
Insulation and air sealing ^a	ENERGY STAR	\$1,600	IECC (of two years before)	\$1,200
Windows and skylights	N/A	N/A	ENERGY STAR Most Efficient	\$600 (total)
Doors	N/A	N/A	ENERGY STAR	\$500 (\$250 max per door)
Electric panels/load service centers	N/A	\$4,000	Enables qualifying equipment, at least 200 amps	\$600
Electric wiring	N/A	\$2,500	N/A	N/A
Measures	N/A	N/A	N/A	N/A
Energy audit	N/A	N/A	IRS to specify	\$150

HOMES Rebate


Rebate and Tax Deduction Summary for Whole-Building Retrofits

	HOMES Rebate	
	Modeled Savings Approach	Measured Savings
Minimum energy savings	20%	15%
Energy metric	Savings calibrated to historical energy usage based on BPI 2400 standard	Weather-normalized energy usage of building pre- and post-retrofit using open-source software
Percentage of project cost	≥80% AMI: 50%, <80% AMI ^c : 80%	≥80% AMI: 50%, <80% AMI: 80%
Incentive amount/cap at minimum savings level	 At 20+% energy savings: ≥80% AMI: 50% of project cost up to \$2,000/home or dwelling unit, up to \$200,000 per multifamily building <80% AMI: 80% of project cost up to \$4,000/home or dwelling unit, up to \$400,000 per multifamily building At 35+% energy savings: ≥80% AMI: 50% up to \$4,000/home or dwelling unit, up to \$400,000 per building <80% AMI: 50% up to \$4,000/home or dwelling unit, up to \$400,000 per multifamily building 	Payment per kilowatt-hour-equivalent saved relative to the average home/dwelling unit in the state. \$2,000 incentive earned for 20% energy savings, can increase or decrease based on actual savings realized (no cap)
Contractor rebate	\$200 for each home in a disadvantaged community	

Electric Energy Efficiency Potential Forecast


Cumulative Achievable Technical Potential (2026-2050)

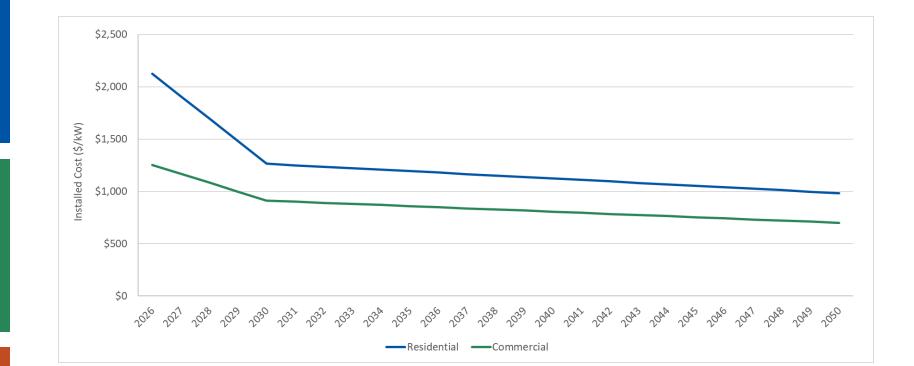
Natural Gas Energy Efficiency Potential Forecast

Cumulative Achievable Technical Potential (2026-2050)

CADMUS

Solar PV Cost Forecast

Residential and Commercial Installed Cost


Residential costs: \$2,123 per kW (in \$2026) Based on historical PSE data

Commercial costs:

\$1,252 per kW (in \$2026) Based on historical PSE data

Costs decline according to NREL 2021 ATB "moderate" estimates

CADMUS