

Sammamish-Juanita 115 kV Project Advisory Group Meeting #2

Barry Lombard

PSE Project Manager

Joanne Markert

GeoEngineers

October 17, 2011

Chapter 1: Response to information requests

Chapter 2: Review past route options

Chapter 3: Project routing model overview

Eastside major electric and natural gas system projects expected to be constructed over the next decade

C 188

Chapter 1: Response to information requests

Chapter 2: Review past route options

Chapter 3: Project routing model overview

Information requested at Meeting #1

- Experience with underground transmission lines
- Trees and canopy cover
- Potential transmission line impacts
 - Noise
 - Radio interference
 - Electric and magnetic fields, science and current research
 - Drew Thatcher, Board Certified Health Physicist
 - Visual
 - Construction
 - Easements (existing and new)
- Public meetings notification

Trees and canopy cover

PUGET SOUND ENERGY UTILITY LANDSCAPING ZONE

PSE.com

Audible transmission line noise

- 230 kV lines can be associated with audible noise due to the higher electric fields
- 115 kV lines in general do not produce noise related issues during wet or dry weather
- Over the years transmission line construction improvements have helped minimize typical audible noises as well as radio frequency interference

Radio and television interference

- Overhead transmission lines, in general, do not interfere with normal radio or TV reception
- For a 115 kV line the potential may exist for gap discharges due to tiny separations between connections, resulting in a broad radio frequency (RF) interference that can extend from 20 kHz to 800 MHz
- This is unusual for new transmission lines due to design improvements
- If RF interference is identified, the source can be located and repaired
- In general it is more common for distribution lines to be a source of RF interference

A comparison of electric and magnetic fields

The Electromagnetic Spectrum

Background on EMF studies

- Epidemiology the study of exposures to humans
- Animal and laboratory studies
- Is there a plausible biological explanation?

Public health summary

- EMF is a consequence of using power in our lives
- WHO concludes that magnetic fields and health risks are not established nor are they supported by laboratory studies
- The international guideline for public exposure is 2,000 mG
 - 50 feet from a 115 kV line the exposure is 6.5 mG
 - I foot from a video screen the exposure is 5 mG
- There are no federal or state magnetic fields limits simply because the risks have not been proven

EMF and transmission lines

Electric fields

- An object placed in an electric field becomes "charged"
- The strength of the charge depends on:
 - Strength of the electric field
 - Surface area of the object
 - Distance between the source and the object
- If a charged object touches a grounded object, the charge will discharge into the ground. To prevent an object from becoming energized by an electric field, simply ground the object.

Public meeting notifications

- Public meetings
 - Tentatively planned for December 2011 and February 2012
 - Notifications will include:
 - Postcards mailed to project area residents and landowners
 - Advertisements in local newspapers
 - Email to project email list
 - Project webpage
 - Blog/email post for AG members to inform their communities
 - City communications tools

Chapter 1: Response to information requests

Chapter 2: Review past route options

Chapter 3: Project routing model overview

General transmission line siting considerations

- Access
- Community development plans
- Constructability
- Environmental impacts
- Existing utilities
- Land use regulations
- Maintenance and operation
- Permitting
- Public input
- Reliability

- Rights of way
- Straight, direct route
- Topographic features
- Types of property
- Vegetation

Public feedback on 2009 potential route options

- Public meeting with 42 attendees
- We heard these routing themes:
 - Use existing rights of way
 - Route through commercial / industrial areas rather than residential areas
 - Use existing distribution poles

A fresh approach for the project...

- Using what we heard to inform development of alternatives
- Using a siting model methodology by Ian McHarg
- The siting model will:
 - Incorporate PSE's and community's siting criteria
 - Develop route alternatives, which may or may not result in similar routes as from 2009
- Need advisory group's help to:
 - Confirm model criteria
 - Consider how to weight different criteria
 - Review route alternatives

BREAK

Chapter 1: Response to information requests

Chapter 2: Review past route options

Chapter 3: Project routing model overview

- Challenging siting with complex issues
- Promotes discussion of alternative scenarios
- Identify a route the SAG and PSE can support

Chapter 3: GeoRoute Selection Model

People make decisions NOT models

- Balance values of the community
- Priority of the data used in the model
- How to interpret/ use the results

Chapter 3: GeoRoute Selection Model 瘫

0 155

Chapter 3: GeoRoute Selection Model (PSE) SOUND SOUND

Built Environment Data Layers

Data Reviewed, Within Study Area	Data Reviewed, Not Within Study Area
Single Family Residential Zoning	Cultural/Historic Resources
Multi Family Residential Zoning	Areas of property disputes
Urban Recreation Zoning	Open space taxation parcels
Parcel Size < 5 acres	Airports
Local Parks	Scenic Highways
Native Growth Protection Areas	Surface Mining
View Corridors (Redmond)	Parcels Fronting Local Access Streets
	GeoEngineers /

Single Family Residences

A 155

0 155

Natural Environment

Chapter 3: GeoRoute Selection Model (PSE) SOUND SOUND

Natural Environment Data Layers

Data Reviewed, Within Study Area		Data Reviewed, Not within Study Area
Wetlands	Shoreline Jurisdiction	WA Natural Heritage Program areas
Landslide Hazards	Lakes	
Seismic Hazards	100 year floodplain	
Erosion Hazards	Contiguous Tree Canopy	
Streams		
Steep Slopes >40%		
Sensitive Species (WDFW)		

Wetlands

0 155

Landslide Hazards

0 155

Engineering Data Layers

Data Reviewed, Within Study Area	Data Reviewed, Not Within Study Area
Curved Streets	BPA Crossing
Structures within 15' of R/W	Future WSDOT Improvement areas
Parcels not adjacent to Public R/W	
Interstate Highway Crossing	
Steep Slopes >40%	

Chapter 3: GeoRoute Selection Model PUGET

Street Curves

Chapter 3: GeoRoute Selection Model *pse*

Steep Slopes >40%

A 155

Built Environment Criteria Most Important

40

Engineering Criteria Most Important

Chapter 3: GeoRoute Selection Model 瘫

Chapter 3: GeoRoute Selection Model

Opportunities Data Layers

Data Reviewed, Used for Modeling	Data Reviewed, Not Used for Modeling
Commercial/Industrial Zoning	Open Vegetative Cover
Arterial Street	Community Plan Compatibility
Trails R/W	
Railroad R/W	
Parcel size > 5 acres	
Existing PSE Rights-of-Way	

0 155

Chapter 3: GeoRoute Selection Model 🔊

E PUGET SOUND ENERGY

OPPORTUNITIES

COMMUNITY INPUT

Industrial/Commercial Zoning

0

46

0 15E

Engineering Criteria Most Important, No Opportunities Considered

Engineering Criteria Most Important, **Opportunities Considered**

50

Natural Environment Criteria Most Important, No Opportunities Considered

51

Natural Environment Criteria Most Important, **Opportunities Considered**

Next steps

- Over the next two months PSE and the Advisory Group will:
 - Validate the model weighting and criteria
 - Develop and discuss possible alternatives
 - Narrow the alternatives to three potential alternatives for public review
- PSE will host an open house later this fall to ask the public for feedback on three potential route alternatives

Public comment from audience

Next meeting

- Before the meeting:
 - Review the criteria list and advise PSE if you think there are missing criteria that should be mapped
- During the Nov. 3 meeting, we will:
 - Discuss and validate the model's criteria and weights
 - Run the model to develop possible alternatives
 - Begin discussing alternatives

Mark your calendars for...

- Advisory group meetings
 - November 3
 - November 17
- Project area bus tour
 - October 28 from 2:00 p.m. to 4:00 p.m.
 - October 29 from 9:00 a.m. to 11:00 a.m.

Questions?

Sammamish-Juanita Project Contacts:

Barry Lombard

Project Manager

barry.lombard@pse.com

425-456-2230

Jason Van Nort

Government and Community Relations Manager

jason.vannort@pse.com

425-462-3820

Thank You!